首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Design flexibility for plate heat exchangers is a measure of the ability to adjust the characteristics of individual channels (semi-)independently to suit a particular application. Conventional plate heat exchangers with approximately sinusoidal corrugations have limited design flexibility since the channels for the two heat- exchanging streams are generally geometrically identical. Corrugations that are assymetrical in profile make it possible to construct physically different configurations from a set of identical plates: channels of different cross-sectional free flow area are feasible. Such plates used in various orientations with respect to each other were found to be less efficient than plates with sinusoidal corrugations because a lower heat transfer rate is obtained per unit of pumping power. However, when the flow rates or allowable pressure drops of the two streams exchanging heat differ greatly, such plates may be advantageous.  相似文献   

2.
针对板式换热器无法保证换热面两侧流体的流动阻力完全相同,把板式换热器受涨侧和受压侧流动阻力合并为一个处理阻降来解决。通过实验对不同混装方式的板式换热器进行流动阻力测试,采用数据分析及公式拟合的方法,得出混装板式换热器流动阻力的主要影响因素是混合流道所占的比例,并利用线性拟合的方法,得到流动阻力的计算方法,从而确定板式换热器混装中流动阻力。  相似文献   

3.
4.
板式换热器在工业生产中广泛应用,采用数值模拟和实验相结合的方法对新型蜂窝板式换热器进行研究。结果表明:数值模拟和实验结果在合理的误差范围内,验证了数值模拟的可靠性。新型板式换热器内部蜂窝结构附近的速度场出现规律的周期性变化,流体湍流强度增加,Nu和阻力系数f随焊孔直径和蜂窝直径的增加而增大,通过对蜂窝板在3 000≤Re≤25 000的数据结果进行关联,得到了蜂窝板流动换热的准则关系式,为蜂窝板式换热器的优化提供了理论依据,并为工业生产提供参考。  相似文献   

5.
板式换热器传热和阻力特性的实验研究   总被引:2,自引:0,他引:2  
利用搭建的液-液型板式换热器试验平台,根据实验数据运用定性雷诺数法拟合出传热关联式,找出Nu与摩擦因子f之间的通用关系式,为板式换热器的设计计算提供了依据。运用传热量与功率的消耗比来评价板式换热器的性能,找出了影响其性能的主要因素,进一步澄清了单纯依靠提高流速来增加传热性能是不经济的。  相似文献   

6.
7.
This paper will show some of the problems that may be encountered when using a compact plate exchanger as an evaporator in a refrigeration system which utilizes a thermostatic expansion valve as its controlling device.  相似文献   

8.
为了研究无干扰换热条件下,中深层地热能的实际取热性能,文章通过数值模拟方法模拟计算了套管式中深层地埋管换热器的名义取热量。模拟结果表明,套管式中深层地埋管换热器的名义取热量随着钻孔深度、大地热流、循环水流量、当地大气年平均温度的增加而增加。套管式中深层地埋管换热器周围土层的地质条件分布也影响着中深层地埋管换热器的名义取热量,具体表现为浅层土层的导热系数越小,中深层地埋管换热器的名义取热量越大;深层土层的导热系数越大,中深层地埋管换热器的名义取热量也越大。通过调整地埋管换热器的相关参数,并选择合适的地埋管埋设地点等优化措施,可使套管式中深层地埋管换热器达到可观的名义取热量。  相似文献   

9.
This paper presents a heat and mass transfer simulation of an adsorber, taking into consideration the geometry of the heat exchanger and the diffusion in the adsorbent medium. In this model, an increment in the direction of heating/cooling fluid containing one (or more) fin pitch was considered. In the domain of this increment, the distribution of the adsorbent temperature was evaluated in the radial and axial directions. The model is validated by experimental data of different adsorbents, volume flows and temperatures. All data were collected in an adsorber test-bench at Fraunhofer ISE. As a result it was found a coefficient of multiple determination of around 0.94 and an error of 20% during the transient. Finally, the model was run on typical operation for cooling application and compared with data from literature. A numerical energy balance was also evaluated. In summary, the results obtained by a independent group shows the same range of confidence of the model developed here, in terms of the tendency of the curves and even the absolute values.  相似文献   

10.
This paper presents the development and application of a three-dimensional (3D) numerical simulation model for U-tube borehole heat exchangers (BHEs). The proposed model includes the thermal capacities of the borehole components, viz., the fluid inside the tubes, as well as the grouting material, making it possible to consider the transient effects of heat and mass transports inside the borehole. In this approach, the use of simplified thermal resistance and capacity models (TRCMs) provides accurate results while substantially reducing the number of nodes and the computation time compared with fully discretized computations such as finite element (FE) models. The model is compared with a fully discretized FE model which serves as a reference. Furthermore, the model is used to evaluate thermal response test (TRT) data by the parameter estimation technique. Comparison of the model results with the results of an analytical model based on the line-source theory further establishes the advantage of the developed 3D transient model, as the test duration can be shortened and results are more accurate.  相似文献   

11.
The purpose of this study is to suggest a general method for the optimal design of a plate heat exchanger (PHE) with undulated surfaces that complies with the principles of sustainability. A previously validated CFD code is employed to predict the heat transfer rate and pressure drop in this type of equipment. The computational model is a three-dimensional narrow channel with angled triangular undulations in a herringbone pattern, whose blockage ratio, channel aspect ratio, corrugation aspect ratio, angle of attack and Reynolds number are used as design variables. To limit the number of simulations needed, the Box–Behnken technique is employed. An objective function that linearly combines heat transfer augmentation with friction losses, using a weighting factor that accounts for the cost of energy, is employed for the optimization procedure using response surface methodology (RSM). New correlations are provided for predicting Nusselt number and friction factor in such PHEs. The results are in very good agreement with published data. Finally, optimal design specifications are suggested for a range of Re for two values of the weighting factor.  相似文献   

12.
Organic Rankine Cycles (ORCs) are particularly suitable for recovering energy from low-grade heat sources. This paper describes the behavior of a small-scale ORC used to recover energy from a variable flow rate and temperature waste heat source. A traditional static model is unable to predict transient behavior in a cycle with a varying thermal source, whereas this capability is essential for simulating an appropriate cycle control strategy during part-load operation and start and stop procedures. A dynamic model of the ORC is therefore proposed focusing specifically on the time-varying performance of the heat exchangers, the dynamics of the other components being of minor importance. Three different control strategies are proposed and compared. The simulation results show that a model predictive control strategy based on the steady-state optimization of the cycle under various conditions is the one showing the best results.  相似文献   

13.
Two‐dimensional conjugate conduction/convection numerical simulations were carried out for flow and thermal fields in a unit model of a counter‐flow‐type corrugated thin plate heat exchanger core. The effects of the thermal resistance of the solid plate, namely the variation of the plate thickness and the difference of the plate material, on the heat exchanger performance were examined in the Reynolds number range of 100<Re<400. Higher temperature effectiveness was obtained for a thicker plate at any Reynolds number, which was a unique feature of corrugated thin plate geometry. Detailed discussions on the thermal fields revealed that restricting the heat conduction along the plate by making the plate thinner or choosing a low thermal conductivity material causes a larger plate temperature variation along the plate, and, consequently, a smaller amount of thermal energy exchanged between two fluids. © 2006 Wiley Periodicals, Inc. Heat Trans Asian Res, 35(3): 209–223, 2006; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20110  相似文献   

14.
为探讨黏液形成菌在板式换热器里的结垢规律,对不同流速、温度及体积分数下黏液形成菌在板式换热器内的污垢特性进行了实验研究。结果表明:随着流速的增加,黏液形成菌的污垢热阻渐近值逐渐减小;随着温度的升高,黏液形成菌结垢的诱导期缩短,并且达到稳定的时间增加,在实验温度范围内,污垢热阻渐近值在35℃时最大;而随着细菌体积分数的增加,污垢热阻值呈现明显幅度的增长。  相似文献   

15.
Thermal treatment of fluid foods represents a major unit operation in the food industry, to ensure the product's safety and quality features. But during the thermal treatments of such sensible fluids in common plate heat exchangers, food constituents such as proteins can be thermally damaged and precipitated to form fouling that greatly affect the treatment efficiency and alter the product's desired features.Computational Fluid Dynamics simulations can then be successfully exploited, bringing forth temperature and velocity information that yield for deposit distributions when coupled to biochemical notations for thermal denaturation of fluid constituents.The present work exploits such modeling for a single-channel heat exchanger during pasteurization of milk. The model enforces a conjugate system of differential equations to a heat exchanger's corrugated plate to combine flow, heat transfer and local transport of β-lactoglobulin. A preliminary computation has been performed that could be applied to geometry optimization (different corrugation shape and orientation) and for a variety of biochemically evolutive products.  相似文献   

16.
Thermal modeling and optimal design of compact heat exchangers are presented in this paper. ε–NTUεNTU method was applied to estimate the heat exchanger pressure drop and effectiveness. Fin pitch, fin height, fin offset length, cold stream flow length, no-flow length and hot stream flow length were considered as six design parameters. Fast and elitist non-dominated sorting genetic-algorithm (NSGA-II) was applied to obtain the maximum effectiveness and the minimum total annual cost (sum of investment and operation costs) as two objective functions. The results of optimal designs were a set of multiple optimum solutions, called ‘Pareto optimal solutions’. The sensitivity analysis of change in optimum effectiveness and total annual cost with change in design parameters of the plate fin heat exchanger was also performed and the results are reported. As a short cut for choosing the system optimal design parameters the correlations between two objectives and six decision variables with acceptable precision were presented using artificial neural network analysis.  相似文献   

17.
Improving heat exchanger's performance by increasing the overall heat transfer as well as minimising pressure drop is one of the promising fields of research to focus on. Nanofluids with higher thermal conductivity and better thermophysical properties can be applied in heat exchanger to increase the heat transfer rate. In the present study SiO2, TiO2 and Al2O3 are applied in a plate heat exchanger and the effects on thermophysical properties and heat transfer characteristics are compared with the base fluid. Since it is desired to minimize the pressure drop, the influence of nanofluid application on pressure drop and entropy generation is investigated. It is concluded that the thermal conductivity, heat transfer coefficient and heat transfer rate of the fluid increase by adding the nanoparticles and TiO2 and Al2O3 result in higher thermophysical properties in comparison with SiO2. The highest overall heat transfer coefficient was achieved by Al2O3 nanofluid, which was 308.69 W/m2.K in 0.2% nanoparticle concentration. The related heat transfer rate was improved around 30% compared to SiO2 nanofluid. In terms of pressure drop, SiO2 shows the lowest pressure drop, and it was around 50% smaller than the pressure drop in case of using TiO2 and Al2O3.  相似文献   

18.
Corrugated plate heat exchangers have larger heat transfer surface area and increased turbulence level due to the corrugations. In this study, experimental heat transfer data are obtained for single phase flow (water-to-water) configurations in a commercial plate heat exchanger for symmetric 30°/30°, 60°/60°, and mixed 30°/60° chevron angle plates. Experiments were carried out for Reynolds number ranging from 500 to 2500 and Prandtl number from 3.5 to 6.5. Experimental results show significant effect of chevron angle and Reynolds number on the heat transfer coefficient. Based on the experimental data, a correlation to estimate Nusselt number as a function of Reynolds number, Prandtl number and chevron angle has been proposed.  相似文献   

19.
A numerical model-‘Cinematic’ model-utilising analytical solutions, has been developed to simulate the dynamic behaviour of an ideal, liquid-liquid, concentric pipe, countercurrent heat exchanger. This numerical model is capable of providing time domain solution directly. The details of the numerical model is presented including the frequency-response testing of the model. Frequency of disturbance is varied over a wide range (0.1 cycle/min to 50 cycles/min) and the results are compared with analytically obtained frequency-responses using Laplace transforms and trial function approaches. The following interesting features of the asymptotic behaviour of the amplitude ratios, obtained by analytical methods (Laplace transforms and trial function approaches) are also observed from the results of the ‘Cinematic’ model. These checks provide a good means to validate the dynamics predicted by the ‘Cinematic’ model.(i) The sum of the limiting amplitude ratios (ω å 0), calculated based on the response at the outlets of the annulus and the pipe to the disturbance, equals unity.  相似文献   

20.
Shive Dayal Pandey  V.K. Nema 《Energy》2011,36(5):2997-3001
Exergy loss measures ineffectiveness of a heat exchanger. Hence, it was experimentally found in a three-channel 1-1 pass plate heat exchanger (PHE). Air was made to flow in the central channel to get heated by water in the outer channels under conditions of counter and parallel flows. The plates had sinusoidal wavy surfaces having corrugation angle of 30°. Reynolds numbers were in the range of 650-2600 for air and 400-1650 for water. Bulk temperature of air was in the range from 46 °C to 63 °C and that of water in the range 70-75 °C. To avoid entropy generation paradox, two methods have been proposed. In the first method exergy loss is scaled on product of heat capacity rate of cold fluid and its inlet temperature, and in the other on maximum heat transfer rate. The second method helps in arriving at the conclusions more precisely. The experimental results have been compared with the results available in the literature for corrugated water-water PHE. The exergy loss in the sinusoidal PHE is found less than that in the rectangular wavy PHE for given flow conditions and may be attributed to less turbulence and better solid-fluid contact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号