首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Groundwater flows at approximately 1–3 m under the ground surface in a given region. If groundwater flow is present, the performance of a horizontal ground heat exchanger (HGHE), buried in a shallow trench, is enhanced. Nevertheless, owing to the general depth at which groundwater is present, research regarding the heat transfer of a ground heat exchanger (GHE) under conditions with groundwater flow has mainly focused on vertical GHE systems. To the authors’ knowledge, no such studies have addressed HGHEs. From a system design perspective, a prediction tool is needed to consider the groundwater flow, optimize the size of the horizontal heat exchanger, minimize the initial cost and maximize the operational efficiency. Therefore, in this study, a moving ring source model was established and solved analytically to describe the temperature response of a spiral heat exchanger with groundwater flow. In addition, experiments were carried out to study the soil temperature variation during the operation of a spiral heater with different water velocities. The validity of the proposed model was proven by the good agreement between the experimental and calculated results. The average virtual tube surface temperature variations of single ring sources in two different configurations are discussed. Furthermore, the average virtual tube surface temperatures of multiple ring sources extending from single arrangements were computed and approximation algorithms were introduced to reduce the calculation time. The approximation approach has been proven to run thousands of times faster than the initial method, and the calculation results are in 97% agreement with those of the initial method. In summary, this study provides a useful tool for the design of spiral heat exchangers.  相似文献   

2.
We present a new analytical model based on the finite line source that extends the steady state results for parallel horizontal pipes to the transient case and for any desired horizontal pipe layout. The analytical model is validated, when there is no freezing/thawing, by a 3D finite element numerical model. When the phase change is accounted for in the numerical model, the analytical model still provides good approximation to the ground temperature during the heating season and the heat extracted by the ground heat exchanger. However, summer ground temperature and thaw depth are overestimated by the analytical model. A case study for a typical building in Kuujjuaq (northern Canada) area is analyzed. The ground heat exchanger layout follows a spiral pattern characterized by three parameters: length L, depth D, and spacing S. The influence of each parameter on the amount of heat extracted from the ground and on the ground temperature at a control point is assessed. The results show that increasing depth D favors keeping the ground frozen at this depth and increases the amount of heat that may be extracted. Conversely, increasing S and/or L is beneficial for the amount of heat extracted, but it enhances the risk of thawing around the pipes. The model and case study provides useful ground heat exchanger design guidelines in cold regions for the double purpose of ground freezing and heat extraction.  相似文献   

3.
The imbalance of heat extracted from the earth by the underground heat exchangers in winter and ejected into it in summer is expected to affect the long term performance of conventional ground source heat pump (GSHP) in territories with a cold winter and a warm summer such as the middle and downstream areas of the Yangtze River in China. This paper presents a new multi-function ground source heat pump (MFGSHP) system which supplies hot water as well as space cooling/heating to mitigate the soil imbalance of the extracted and ejected heat by a ground source heat pump system. The heat transfer characteristic is studied and the soil temperature around the underground heat exchangers are simulated under a typical climatic condition of the Yangtze River. A three-dimensional model was constructed with the commercial computational fluid dynamics software FLUENT based on the inner heat source theory. Temperature distribution and variation trend of a tube cluster of the underground heat exchanger are simulated for the long term performance. The results show that the soil temperature around the underground tube keeps increasing due to the surplus heat ejected into the earth in summer, which deteriorates the system performance and may lead to the eventual system deterioration. The simulation shows that MFGSHP can effectively alleviate the temperature rise by balancing the heat ejected to/extracted from underground by the conventional ground source heat pump system. The new system also improves the energy efficiency.  相似文献   

4.
Christopher J. Wood  Hao Liu  Saffa B. Riffat   《Energy》2010,35(12):4932-4940
Novel methods are sought to provide greater efficiency of the installation of ground heat exchangers for GSHPs (ground source heat pumps) in domestic buildings. An economically viable option is to utilise concrete foundation piles as ground heat exchangers. The objective of this study is to investigate the operation of utilising a piled foundation structure as a ground heat exchanger. A test plot of 72 m2 (ground floor area) was produced with 21 × 10 m deep concrete piles, with a single U tube pipe in each. Ground heat was extracted by a heat pump with the heat loading being varied in line with the date and the average air temperature. Over the 2007/2008 heating season this study had investigated the temperature changes in the foundation piles and the surrounding ground in addition to the heat pump operational performance. The temperature changes observed in the region of the test plot were compared with variations naturally experienced in the ground due to the seasonal climatic influence. The SPF (seasonal performance factor) of the heat pump was 3.62 and the ground temperature at a distance of 5 m from the test plot was seen to be undisturbed by the heat extraction and followed the predicted seasonal variation.  相似文献   

5.
唐逸  耿鹏云  鄂广全 《节能技术》2007,25(6):512-515
本文基于能量平衡方程,建立了土壤源热泵U型埋管换热器周围土壤的非稳态传热模型,用所建立的传热模型对土壤源热泵冬季取热过程进行了动态模拟.研究了不同物性土壤温度及U型埋管出口流体温度的变化规律,分析了土壤物性对换热器换热性能的影响,采用间歇运行方式提高了换热器换热能力.通过建立数学模型得出的结果,可供设计参考.  相似文献   

6.
太阳能辅助供暖的地源热泵经济性分析   总被引:17,自引:1,他引:17  
在冬季土壤温度较低,而且以热负荷为主的北方地区,若完全采用地源热泵来供暖,则地热换热器和机组的初投资均比较高,连续运行的效率也较低,因此,可利用太阳能集热器作为辅助能源。白天完全依靠地源热泵供暖,夜间利用太阳能集热器蓄存的热量,使地热换热器与太阳能集热器串联运行,通过分析比较,该方案比完全用地源热泵供暖更经济。  相似文献   

7.
代元军  孙玉新  陆亦工  石宁 《节能》2011,30(1):72-75
以热负荷为主的北方地区,冬季土壤温度较低,若完全采用地源热泵来供暖,则地热换热器和机组的初投资均比较高,连续运行的效率也较低.提出利用风力发电机产生的电能构成风能集热器作为地源热泵供暖的辅助能源的构想.白天完全依靠地源热泵供暖,夜间利用风能集热器辅助加热,使地热换热器与风能集热器串联运行.通过分析比较,该方案比完全用地...  相似文献   

8.
Viorel Badescu   《Renewable Energy》2007,32(5):845-855
This paper develops previous research on passive house (PH) space heating. A simple and accurate ground heat exchanger model is developed. It is based on a numerical transient bi-dimensional approach that allows to computing the ground temperature at the surface and at various depths. The new model was integrated into the existing theoretical approach and implemented within the computer code used to simulate the heating system operation in Pirmasens PH (Rhineland Palatinate, Germany). The heating and cooling potential of the system under real climatic conditions was investigated. The energy delivered by the ground heat exchanger depends significantly on different design parameters like pipe's depth, diameter and material.  相似文献   

9.
梁平 《热能动力工程》1998,13(2):104-107
工业现场试验的结果表明,带有小螺旋角的内外螺旋翅片管(简称内外螺旋翅片管或IOSF管)用于电站高压加热器有着显著的传热强化效果,其实测总传热系数是光滑管加热器的1.43倍,可相应节省换热面积30%。在等面积下使用,则可收到明显的节能效果。  相似文献   

10.
For the shortcoming of air source heat pump in heating condition, a composite heat exchanger was designed which integrates fin tube and tube heat exchanger, and it can achieve synchronous and composite heat exchange in one heat exchanger between working fluids, gaseous and liquid heat source. With the above composite heat exchanger as the core component, the Solar Air Composite Heat Source Heat Pump System (SACHP) was developed which has three working modes, including single solar heat source mode, single air heat source mode and solar air dual heat sources mode. A SACHP experiment table was established and conducted a comprehensive experimental study of three working modes of this system in the standard enthalpy difference laboratory. The results show that when the ambient temperature was −15 °C, compared to the single air heat source mode, the dual heat source mode increased 62% in heat capacity and 59% in COP; when the temperature difference of combined heat transfer was 5 °C, compared to the single air heat source mode, the dual heat source mode increased 51% in heat capacity and 49% in COP. Experimental results demonstrate that the application of the solar air composite heat pump technology can accelerate the application process of the solar heat pump in air conditioners for buildings.  相似文献   

11.
In this study, the performance of a reversible ground‐source heat pump coupled to a municipality water reticulation system, is compared experimentally and with simulations to a conventional air‐source heat pump for space cooling and heating. A typical municipality water reticulation system comprises hundreds of kilometres of pipes designed in loops that will ensure adequate circulation of water. This results in a substantial heat exchanger with great potential. Indirect heat transfer occurs between the refrigerant and ground via the municipality water reticulation system that acts as the water‐to‐ground heat exchanger. The experimental and simulated comparisons of the ground‐source system to the air‐source system are conducted in both the cooling and the heating cycles. Climatalogical statistics are used to calculate the capacities and coefficients of performance of the ground‐source and air‐source heat pumps. Results obtained from measurements and simulations indicate that the utilization of municipality water reticulation systems as a heat source/sink is a viable method of optimizing energy usage in the air conditioning industry, especially when used in the heating mode. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

12.
In this article, we use the concept of artificial neural network and goal oriented design to propose a computer design tool that can help the designer to evaluate any aspect of earth-to-air heat exchanger and behavior of the final configuration. The present study focuses mostly on those aspects related to the passive heating or cooling performance of the building. Two models have been developed for this purpose, namely deterministic and intelligent. The deterministic model is developed by analyzing simultaneously coupled heat and mass transfer in ground whereas the intelligent model is a development of data driven artificial neural network model. Six variables influencing the thermal performance of the earth-to-air heat exchangers which were taken into account are length, humidity, ambient air temperature, ground surface temperature, ground temperature at burial depth and air mass flow rate. Furthermore, a sensitivity analysis was carried out in order to evaluate the impact of various factors involved in the energy balance equation at the burial depth. The model was validated against experimental data sets. Moreover, the developed algorithm is suitable for the calculation of the outlet air temperature and therefore of the heating and cooling potential of the earth-to-air heat exchanger system. The Intelligent model predicts earth-to-air heat exchanger outlet air temperature with an accuracy of ±2.6%, whereas, the deterministic model shows an accuracy of ±5.3%.  相似文献   

13.
The energy analysis of ground source heat pump systems is based on the instantaneous fluid temperature at the ground heat exchanger outlet. This temperature defines the ground source heat pump coefficient of performance (COP) and hence the electricity consumption required in order to fulfill the energy demands of the building. The aim of this work is to present a model able to predict the fluid temperature at the ground heat exchanger outlet, taking into account the heat transfer phenomena in the soil and the temporal variation of the thermal load of the ground heat exchanger. The model developed was verified using experimental data, expanding over a three years period, of a vertical ground heat exchanger. It is proved that the model is able to satisfactorily predict the recorded temperature values throughout the verification period. The differences between measured and estimated outlet water temperatures impose a deviation between the estimated and the actually recorded electricity consumption of less than 4%.  相似文献   

14.
The underground two-dimensional symmetry temperature field of a vertical double spiral coil ground heat exchanger (GHX) designed by the authors for a ground source heat pump (GSHP) system was simulated using the volume-control method. A heat transfer model of underground coil is made, and the underground temperature distribution of the coil was solved numerically. Experimental temperature data are measured. The analytical results are compared thoroughly with the experimental data. The mathematical mode presented herein may provide design guidance for the design of GHX for GSHP systems.  相似文献   

15.
垂直螺旋盘管地源热泵供暖制冷实验研究   总被引:5,自引:1,他引:5  
结合一实际用户建立垂直螺旋盘管地源热泵实验系统,在供暖制冷工况下测量地下盘管的进出水温度,盘管从地下的取热量、排热量,从而分析系统性能、供热、制冷系数。  相似文献   

16.
岩土热物理性质是影响地源热泵系统设计和运营的关键因素,对位于武汉市洪山区的2口不同深度的同轴地埋管换热孔分别进行48 h的热响应试验,并对同轴地埋管换热器内外管之间环形空间中的平均流体温度进行测试.根据同轴地埋管换热器的几何特性,以简便实用的方式测量同轴地埋管换热器环状空间传热流体的平均温度,结合同轴地埋管换热器钻孔热...  相似文献   

17.
在冬冷夏热且夏季冷负荷远大于冬季热负荷的地区常采用带有冷却塔的复合式地源热泵系统,其控制策略存在极大的优化空间。文章提出了直接比较冷却塔和与土壤换热器相连的板式换热器的出口温度的控制方法,并通过人工神经网络预测板式换热器机组侧的出口水温来实现此控制方法。通过FLUENT软件建立复合式地源热泵系统动态数值模型,获取建立神经网络的数据,采用3层BP网络,建立了多个预测板式换热器机组侧出口温度的模型。研究结果表明,采用神经网络可以准确实现此预测,绝对误差不超过0.4℃。  相似文献   

18.
《Energy》2005,30(2-4):359-371
Heating by radiation is widely used for materials processing. Electrical radiant heaters are the most commonly used heaters. Electricity is expensive and the combustion of fossils fuels for electricity production emits CO2. In order to convert the energy from the fuel to radiation energy directly and efficiently, our group has developed a compact, high efficiency, radiation converter using a spiral heat exchanger to recover the energy from high-temperature exhaust gas. The spiral heat exchanger has a weld-free construction to prevent cyclic thermal stress, and is constructed from inexpensive ferrite steel plates. The combustion chamber, equipped with a swirler to mix the gas fuel and air, can achieve stable combustion. The distribution of the surface temperature on the radiant tube was measured by a radiation thermometer, called a thermo viewer, and then the radiant energy emitted from the radiant tube was estimated. The efficiency of the spiral heat exchanger was measured from the temperature of the inlet air and exhaust gas. The heat exchanger achieved a high effectiveness, and heat loss from the exhaust gas was minimized. Consequently, a highly efficient radiation converter was produced to convert the fuel energy to radiation energy.  相似文献   

19.
地源热泵是一种利用土壤所储藏的太阳能资源作为冷热源进行能量转换的供暖制冷空调系统,通过输入少量的高品位能源(如电力、机械功、燃气和液体燃料),实现热量从低温热源向高温热源的转移.以上海某小型别墅为对象,设计了一套家用地源热泵空调系统.首先计算了夏季冷负荷和冬季热负荷,然后根据冷、热负荷选择一套水源热泵机组(MWH080CR型机组)和相应的风机盘管,进行了室内水管环路系统、土壤热交换器和地板采暖的设计选型,最后对系统的能效比进行了计算.结果表明,该空调系统具有节能环保、稳定可靠、舒适耐用等优点.  相似文献   

20.
Ten years' hourly measurements of air and ground temperature values at various depths below bare and short grass soil at Dublin Airport have been used in order to investigate the impact of different ground surface boundary conditions on the efficiency of a single and a multiple parallel earth-to-air heat exchanger system. The heating potential of both these systems buried under bare soil has been assessed and compared with the heating potential of the same systems buried under short-grass-covered soil. The results of this comparison revealed that soil surface cover might be a significant controllable factor for the improvement of the performance of earth-to-air heat exchangers. The heating system consists of a single pipe or multiple parallel pipes laid horizontally, through which ambient or indoor air is propelled and heated by the bulk temperature of the natural ground. The dynamic thermal performance of these systems during the winter period and their operational limits have been calculated using an accurate numerical model. Finally, a sensitivity analysis was performed in order to investigate the effect of the main design parameters, such as pipe length, pipe radius, air velocity inside the tube and the depth of the buried pipe below the earth's surface, on the system heating capacity. Cumulative frequency distributions of the air temperature at the pipe's exit have been developed as a function of the main input parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号