共查询到20条相似文献,搜索用时 15 毫秒
1.
Yu Feng Clement Kleinstreuer 《International Journal of Heat and Mass Transfer》2010,53(21-22):4619-4628
Inherently low thermal conductivities of basic fluids form a primary limitation in high-performance cooling which is an essential requirement for numerous thermal systems and micro-devices. Nanofluids, i.e., dilute suspensions of, say, metal-oxide nanoparticles in a liquid, are a new type of coolants with better heat transfer performances than their pure base fluids alone. Using a new, experimentally validated model for the thermal conductivity of nanofluids, numerical simulations have been executed for alumina-water nanofluid flow with heat transfer between parallel disks. The results indicate that, indeed, nanofluids are promising new coolants when compared to pure water. Specifically, smoother mixture flow fields and temperature distributions can be achieved. More importantly, given a realistic thermal load, the Nusselt number increases with higher nanoparticle volume fraction, smaller nanoparticle diameter, reduced disk-spacing, and, of course, larger inlet Reynolds number, expressed in a novel form as Nu = Nu(Re and Br). Fully-developed flow can be assumed after a critical radial distance, expressed in a correlation Rcrit = fct(Re), has been reached and hence analytic solutions provide good approximations. Nanofluids reduce the system’s total entropy generation rate while hardly increasing the required pumping power for any given Rein. Specifically, minimization of total entropy generation allows for operational and geometric system-optimization in terms of Sgen = fct (Re and δ). 相似文献
2.
Jacqueline Barber Khellil Sefiane David Brutin Lounes Tadrist 《Applied Thermal Engineering》2009,29(7):1299-1308
Boiling in microchannels is widely considered as one of the front runners in process intensification heat removal. Flow boiling heat transfer in microchannel geometry and the associated flow instabilities are not well understood, further research is necessary into the flow instabilities adverse effect on heat transfer.Boiling is induced in microchannel geometry (hydraulic diameter 727 μm) to investigate several flow instabilities. A transparent, metallic, conductive deposit has been developed on the exterior of rectangular microchannels, allowing simultaneous heating and visualisation.Presented in this paper is data for a particular case with a uniform heat flux of 4.26 kW/m2 applied to the microchannel and inlet liquid mass flowrate, held constant at 1.13 × 10?5 kg/s. In conjunction with obtaining high-speed images, a sensitive infrared camera is used to record the temperature profiles on the exterior wall of the microchannel, and a data acquisition system is used to record the pressure fluctuations over time. Various phenomena are apparent during the flow instabilities; these can be characterised into timescales occurring at 100’s seconds, 10’s seconds, several seconds and finally milliseconds. Correlation of pressure oscillations with temperature fluctuations as a function of the heat flux applied to the microchannel is possible.From analysis of our results, images and video sequences with the corresponding physical data obtained, it is possible to follow simultaneously particular flow, pressure and temperature conditions leading to nucleate boiling, flow instabilities and transition regimes during flow boiling in a microchannel. The investigation allowed us to quantify and characterise the timescales of various observed instabilities during flow boiling in a microchannel. High speed imaging revealed some of the controlling physical mechanisms responsible for the observed instabilities. 相似文献
3.
Andrew J.L. Foong N. Ramesh Tilak T. Chandratilleke 《International Journal of Thermal Sciences》2009,48(10):1908-1913
A numerical study was conducted to investigate the fluid flow and heat transfer characteristics of a square microchannel with four longitudinal internal fins. Three-dimensional numerical simulations were performed on the microchannel with variable fin height ratio in the presence of a hydrodynamically developed, thermally developing laminar flow. Constant heat flux boundary conditions were assumed on the external walls of the square microchannel. Results of the average local Nusselt number distribution along the channel length were obtained as a function of the fin height ratio. The analysis was carried out for different fin heights and flow parameters. Interesting observations that provide more physical insight on this passive enhancement technique, and the existence of an optimum fin height are brought out in the present study. 相似文献
4.
Gian Piero Celata Sujoy Kumar Saha Giuseppe Zummo Denam Dossevi 《International Journal of Thermal Sciences》2010,49(7):1086-1094
Heat transfer characteristics of subcooled flow boiling of FC-72 in a single horizontal circular cross-section microchannel (480 μm i.d., 800 μm o.d., 102 mm long) are presented. Different flow patterns, both in the stable and unstable flow boiling regimes, have been captured using high speed video camera. Data in small, medium, high and very high heat flux cases under small, medium and high mass flux has been presented. Convective heat transfer coefficients in each flow boiling situation have been calculated and presented. Stable flow boiling with alternating bubbly/slug flow, slug/annular flow and annular/mist flow have been observed for heat flux of 150 kW/m2 or higher and mass flux of 1500 kg/m2 s or higher. Back and forth oscillations with flow instabilities have been observed in cases of lower heat and mass fluxes. However, no complete reverse flow in upstream direction has been observed. 相似文献
5.
Kanjirakat Anoop Reza Sadr Jiwon Yu Seokwon Kang Saeil Jeon Debjyoti Banerjee 《International Communications in Heat and Mass Transfer》2012
The forced convective heat transfer for flow of water and aqueous nanofluids (containing colloidal suspension of silica nanoparticles) inside a microchannel was studied experimentally for the constant wall temperature boundary condition. Applications of nanofluids have been explored in the literature for cooling of micro-devices due to the anomalous enhancements in their thermo-physical properties as well as due to their lower susceptibility to clogging. The effect of flow rate on thermal performance of nanofluid is analyzed in this study. Variations of thermo-physical properties of the nanofluid samples were also measured. The experimental results show that heat transfer increases with flow rate for both water and nanofluid samples; however, for the nanofluid samples, heat transfer enhancements occur at lower flow rates and heat transfer degradation occurs at higher flow rates (compared to that of water). Electron microscopy of the heat-exchanging surface revealed that surface modification of the microchannel flow surface occurred due to nanoparticle precipitation from the nanofluid. Hence, the fouling of the microchannels by the nanofluid samples is believed to be responsible for the progressive degradation in the thermal performance, especially at higher flow rates. Hence, these results are observed to be consistent with previous experimental studies reported in the literature. 相似文献
6.
Experimental investigation and modelling of heat transfer during convective boiling in a minichannel
《International Journal of Heat and Mass Transfer》2007,50(1-2):208-215
Flow boiling heat transfer characteristics of water are experimentally studied in a circular minichannel with an inner diameter of 1500 μm. The fluid flows upwards and the test section, made of the nickel alloy Inconel 600, is directly electrically heated. Thus, the evaporation takes place under the defined boundary condition of constant heat flux. Mass fluxes between 50 and 100 kg/(m2 s) and heat fluxes from 10 to 115 kW/m2 at an inlet pressure of 3 bar are examined.Infrared thermography is applied to measure the outer wall temperatures of the minichannel. This experimental method permits the identification of different boiling regions, boiling mechanisms and the determination of local heat transfer coefficients. Measurements are carried out in single-phase flow, subcooled and saturated boiling regions. The experimental heat transfer coefficients in the region of saturated boiling are compared with correlations available in literature and with a physically founded model developed for convective boiling. 相似文献
7.
The aim of this paper is to present an inverse heat conduction method used for determining the local convective boiling heat transfer coefficient in mini channel for pure water, copper nanofluid with using three different concentrations of nanoparticles: 5 mg/L, 10 mg/L and 50 mg/L. Sequential specification function method is used to solve the IHCP and estimate the space-variable convective heat transfer coefficient. The uncertainties in the estimated in heat transfer coefficient are calculated using Bias and Variance errors. The technique is used in a series of numerical experiments to provide the optimum experimental design for a boiling heat transfer investigation. 相似文献
8.
Saturated flow boiling heat transfer and pressure drop in silicon microchannel arrays 总被引:1,自引:0,他引:1
Poh-Seng Lee Suresh V. Garimella 《International Journal of Heat and Mass Transfer》2008,51(3-4):789-806
Flow boiling in arrays of parallel microchannels is investigated using a silicon test piece with imbedded discrete heat sources and integrated local temperature sensors. The microchannels considered range in width from 102 μm to 997 μm, with the channel depth being nominally 400 μm in each case. Each test piece has a footprint of 1.27 cm by 1.27 cm with parallel microchannels diced into one surface. Twenty five microsensors integrated into the microchannel heat sinks allow for accurate local temperature measurements over the entire test piece. The experiments are conducted with deionized water which enters the channels in a purely liquid state. Results are presented in terms of temperatures and pressure drop as a function of imposed heat flux. The experimental results allow a critical assessment of the applicability of existing models and correlations in predicting the heat transfer rates and pressure drops in microchannel arrays, and lead to the development of models for predicting the two-phase pressure drop and saturated boiling heat transfer coefficient. 相似文献
9.
Tailian Chen Suresh V. Garimella 《International Journal of Heat and Mass Transfer》2011,54(15-16):3179-3190
Flow boiling of the perfluorinated dielectric fluid FC-77 in a silicon microchannel heat sink is investigated. The heat sink contains 60 parallel microchannels each of 100 μm width and 389 μm depth. Twenty-five evenly distributed temperature sensors in the substrate yield local heat transfer coefficients. The pressure drop across the channels is also measured. Experiments are conducted at five flow rates through the heat sink in the range of 20–80 ml/min with the inlet subcooling held at 26 K in all the tests. At each flow rate, the uniform heat input to the substrate is increased in steps so that the fluid experiences flow regimes from single-phase liquid flow to the occurrence of critical heat flux (CHF). In the upstream region of the channels, the flow develops from single-phase liquid flow at low heat fluxes to pulsating two-phase flow at high heat fluxes during flow instability that commences at a threshold heat flux in the range of 30.5–62.3 W/cm2 depending on the flow rate. In the downstream region, progressive flow patterns from bubbly flow, slug flow, elongated bubbles or annular flow, alternating wispy-annular and churn flow, and wall dryout at highest heat fluxes are observed. As a result, the heat transfer coefficients in the downstream region experience substantial variations over the entire heat flux range, based on which five distinct boiling regimes are identified. In contrast, the heat transfer coefficient midway along the channels remains relatively constant over the heat flux range tested. Due to changes in flow patterns during flow instability, the heat transfer is enhanced both in the downstream region (prior to extended wall dryout) and in the upstream region. A previous study by the authors found no effect of instabilities during flow boiling in a heat sink with larger microchannels (each 300 μm wide and 389 μm deep); it appears therefore that the effect of instabilities on heat transfer is amplified in smaller-sized channels. While CHF increases with increasing flow rate, the pressure drop across the channels has only a minimal dependence on flow rate once boiling is initiated in the microchannels, and varies almost linearly with increasing heat flux. 相似文献
10.
A. Mukherjee S.G. Kandlikar Z.J. Edel 《International Journal of Heat and Mass Transfer》2011,54(15-16):3702-3718
A numerical study has been performed to analyze the wall heat transfer mechanisms during growth of a vapor bubble inside a microchannel. The microchannel is of 200 μm square cross section and a vapor bubble begins to grow at one of the walls, with liquid coming in through the channel inlet. The complete Navier–Stokes equations along with continuity and energy equations are solved using the SIMPLER method. The liquid vapor interface is captured using the level set technique. Experiments have been conducted to validate the numerical model. The bubble growth rate and shapes show good agreement between numerical and experimental results. The numerical results show that the wall heat transfer increases with wall superheat but stays almost unaffected by the liquid flow rate. The liquid vapor surface tension value has little influence on bubble growth and wall heat transfer. However, the bubble with the lowest contact angle resulted in the highest wall heat transfer. 相似文献
11.
Tannaz Harirchian Suresh V. Garimella 《International Journal of Heat and Mass Transfer》2012,55(4):1246-1260
Local heat transfer coefficients and pressure drops during boiling of the dielectric liquid fluorinert FC-77 in parallel microchannels were experimentally investigated in recent work by the authors. Detailed visualizations of the corresponding two-phase flow regimes were performed as a function of a wide range of operational and geometric parameters. A new transition criterion was developed for the delineation of a regime where microscale effects become important to the boiling process and a conventional, macroscale treatment becomes inadequate. A comprehensive flow regime map was developed for a wide range of channel dimensions and experimental conditions, and consisted of four distinct regions – bubbly, slug, confined annular, and alternating churn/annular/wispy-annular flow regimes. In the present work, physics-based analyses of local heat transfer in each of the four regimes of the comprehensive map are formulated. Flow regime-based models for prediction of heat transfer coefficient in slug flow and annular/wispy-annular flow are developed and compared to the experimental data. Also, a regime-based prediction of pressure drop in microchannels is presented by computing the pressure drop during each flow regime that occurs along the microchannel length. The results of this study reveal the promise of flow regime-based modeling efforts for predicting heat transfer and pressure drop in microchannel boiling. 相似文献
12.
Yali Guo Daoyang Qin Shengqiang Shen Rachid Bennacer 《International Communications in Heat and Mass Transfer》2012
The lattice Boltzmann method is applied to simulate the thermal field and flow field of nanofluid natural convection in a square cavity. The heat transfer characteristics of nanofluid are compared with that of water to explore nanofluid heat transfer mechanism. The flow field shows different characters at different Rayleigh number and the average Nusselt number is obtained changing with Rayleigh number. 相似文献
13.
Li Bin He Anding Wang Yueshe Zhou Fangde The National Laboratory of Multiphase Flow in Power Engineering Xi''''an Jiaotong University Xi''''an China 《热科学学报(英文版)》2001,10(2):148-152
IntroductionConvechve boiling or highly subcooled single-Phaseforced convention in micro-channels is an effeCtivecooling meChedsm with a wide ~ge of aPPlications.Among these are the COOling of such diverse system as. accelerator abets, high power resistive magnets,compact fission ~ cores, fusion ~ blankets,advanced space thermal management systems,manufachang and materials Processing OPerations, andhigh-density multi~chip modules in supe~ andOther modular eleCtronics. These devices involv… 相似文献
14.
Three-dimensional numerical simulations of the laminar flow and heat transfer of water in silicon microchannels with non-circular cross-sections (trapezoidal and triangular) were performed. The finite volume method was used to discretize the governing equations. Numerical results were compared with experimental data available in the literature, and good agreements were achieved. The effects of the geometric parameters of the microchannels were investigated, and the variations of Nusselt number with Reynolds number were discussed from the field synergy principle. The simulation results indicate that when the Reynolds numbers are less than 100, the synergy between velocity and temperature gradient is much better than the case with Reynolds number larger than 100. There is an abrupt change in the intersection angle between velocity and temperature gradient around Re=100. In the low Reynolds number region the Nusselt number is almost proportional to the Reynolds number, while in the high Reynolds number region, the increasing trend of Nusselt number with Reynolds number is much more mildly, which showed the applicability of the field synergy principle. In addition, for the cases studied the fully developed Nusselt number for the microchannels simulated increases with the increasing Reynolds number, rather than a constant. 相似文献
15.
The effect of viscous dissipation and rarefaction on rectangular microchannel convective heat transfer rates, as given by the Nusselt number, is numerically evaluated subject to constant wall heat flux (H2) and constant wall temperature (T) thermal boundary conditions. Numerical results are obtained using a continuum based, three-dimensional, compressible, unsteady computational fluid dynamics algorithm with slip velocity and temperature jump boundary conditions applied to the momentum and energy equations, respectively. For the limiting case of parallel plate channels, analytic solutions for the thermally and hydrodynamically fully developed momentum and energy equations are derived, subject to both first- and second-order slip velocity and temperature jump boundary conditions, from which analytic Nusselt number solutions are then obtained. Excellent agreement between the analytical and numerical results verifies the accuracy of the numerical algorithm, which is then employed to obtain three-dimensional rectangular channel and thermally/hydrodynamically developing Nusselt numbers. Nusselt number data are presented as functions of Knudsen number, Brinkman number, Peclet number, momentum and thermal accommodation coefficients, and aspect ratio. Rarefaction and viscous dissipation effects are shown to significantly affect the convective heat transfer rate in the slip flow regime. 相似文献
16.
J. van Rij T. Ameel T. Harman 《International Journal of Heat and Mass Transfer》2009,52(11-12):2792-2801
The frictional and convective heat transfer characteristics of rarified flows in rectangular microchannels, with either isoflux or isothermal boundary conditions, are evaluated subject to second-order slip boundary conditions, creep flow, viscous dissipation, and axial conduction effects. Numerical results are obtained using a continuum based, three-dimensional, compressible, unsteady computational fluid dynamics algorithm with first- and second-order slip velocity and temperature jump boundary conditions applied to the momentum and energy equations, respectively. The results, reported in the form of Poiseuille and Nusselt numbers, are found to be significant functions of aspect ratio, Knudsen number, slip model parameters, Brinkman number, and Peclet number. 相似文献
17.
《International Journal of Heat and Mass Transfer》2007,50(11-12):2078-2088
The present study explores experimentally the two-phase flow instability in a microchannel heat sink with 15 parallel microchannels. The hydraulic diameter for each channel is 86.3 μm. Flow boiling in the present microchannel heat sink demonstrates significantly different two-phase flow patterns under stable or unstable conditions. For the stable cases bubble nucleation, slug flow and slug or annular flows appear sequentially in the flow direction. On the other hand, forward or reversed slug/annular flows appear alternatively in every channel. Moreover, the length of bubble slug may oscillate for unstable cases with reversed flow demonstrating the suppressing effect of pressure field for bubble growth. It is found that the magnitude of pressure drop oscillations may be used as an index for the appearance of reversed flow. A stability map on the plane of inlet subcooling number versus phase change number is established. A very narrow region for stable two-phase flow or mild two-phase flow oscillations is present near the line of zero exit quality. 相似文献
18.
Local convective boiling heat transfer and pressure drop of nanofluid in narrow rectangular channels
Mounir Boudouh Hasna Louahlia Gualous Michel De Labachelerie 《Applied Thermal Engineering》2010,30(17-18):2619-2631
This paper reports an experimental study on convective boiling heat transfer of nanofluids and de-ionized water flowing in a multichannel. The test copper plate contains 50 parallel rectangular minichannels of hydraulic diameter 800 μm. Experiments were performed to characterize the local heat transfer coefficients and surface temperature using copper–water nanofluids with very small nanoparticles concentration. Axial distribution of local heat transfer is estimated using a non-intrusive method. Only responses of thermocouples located inside the wall are used to solve inverse heat conduction problem. It is shown that the distribution of the local heat flux, surface temperature, and local heat transfer coefficient is dependent on the axial location and nanoparticles concentration. The local heat transfer coefficients estimated inversely are close to those determined from the correlation of Kandlikar and Balasubramanian [An extension of the flow boiling correlation to transition, laminar and deep laminar flows in minichannels and microchannels, Heat Transfer Eng. 25 (3) (2004) 86–93.] for boiling water. It is shown that the local heat flux, local vapor quality, and local heat transfer coefficient increase with copper nanoparticles concentration. The surface temperature is high for de-ionized water and it decreases with copper nanoparticles concentration. 相似文献
19.
A simultaneous visualization and measurement study has been carried out to investigate stable and unstable flow boiling phenomena of deionized water in a single microchannel having a hydraulic diameter of 155 µm with a bottom Pyrex glass wall. Fifteen platinum serpentine microheaters, bonded on the Pyrex glass wall, were used to measure local instantaneous wall temperatures. At low mass flux, a syringe pump was used to drive the subcooled water passing through the microchannel. Stable and unstable flow boiling modes in the single microchannel are identified, and flow pattern maps in terms of heat flux and mass flux as well as in term of exit vapor quality are presented respectively. It was found that unstable flow boiling occurred in the single microchannel if the exit vapor quality xe > 0.013. 相似文献
20.
《International Journal of Heat and Mass Transfer》2007,50(5-6):1049-1060
We studied the unique characteristics of flow boiling in a single microchannel, including the periodic pressure drop, mass flow rate, and temperature fluctuations, in terms of a long time period. Experiments were conducted using a single horizontal microchannel and deionized water to study boiling instabilities at very small mass and heat flow rate conditions. A Polydimethylsiloxane (PDMS) rectangular single microchannel had a hydraulic diameter of 103.5 μm and a length of 40 mm. A series of piecewise serpentine platinum microheaters were fabricated on the inner bottom wall of the rectangular microchannel to supply thermal energy to the test fluid. Real-time flow visualizations of the flow pattern inside the microchannel were performed simultaneously with measurements of the experimental parameters. Tests were performed for mass fluxes of 170 and 360 kg/m2 s and heat fluxes of 200–530 kW/m2. The test results showed that the heated wall temperature, pressure drop, and mass flux all fluctuated with a long period and large amplitude. These periodic fluctuations exactly matched the transition of two alternating flow patterns inside the microchannel: a bubbly/slug flow and an elongated slug/semi-annular flow. Therefore, the flow pattern transition instability in the single microchannel caused a cyclic behavior of the wall temperature, pressure drop, and mass flux, and this behavior had a very long period (100–200 s) and large amplitude. 相似文献