首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A numerical simulation for studying fluid flow and heat transfer characteristics in microchannels at slip flow regime with consideration of slip and temperature jump is studied. The wall roughness is simulated in two cases with periodically distributed triangular microelements and random shaped micro peaks distributed on the wall surfaces. Various Knudsen numbers have used to investigate the effects of rarefaction. The numerical results have also checked with available theoretical and experimental relations and good agreements has achieved. It has been found that rarefaction has more significant effect on flow field in microchannels with higher relative roughness. The negative influence of roughness on fluid flow and heat transfer found to be the friction factor increment and Nusselt number reduction. In addition high influence of roughness distribution and shape has been shown by a comparison of Poiseuille and Nusselt numbers for tow different cases.  相似文献   

2.
A two dimensional numerical simulation is performed for incompressible and compressible fluid flows through microchannels in slip flow regime with consideration of slip and temperature jump boundary conditions. The wall roughness is simulated in two cases with triangular microelements and random shaped micro peaks distributed on wall surfaces to study the effects of roughness shape and distribution on the flow field. Various Mach and Knudsen numbers have been used to investigate the effects of rarefaction as well as compressibility. It is found that rarefaction has a more significant effect on the flow field in microchannels with higher relative roughness. It is also found that the effect of compressibility will be more noticeable when relative roughness increases. In addition a high influence of roughness distribution and shape can be seen for both compressible and incompressible flows. The numerical results have also been checked with available theoretical and experimental relations and a good agreement has been achieved.  相似文献   

3.
High pressure drop and high length to hydraulic diameter ratios yield significant compressibility effects in microchannel flows, which compete with rarefaction phenomena at the smaller scale. In such regimes, flow field and temperature field are no longer decoupled. In presence of significant heat transfer, and combined with the effect of viscous dissipation, this yields to a quite complex thermo-fluid dynamic problem. A finite volume compressible solver, including generalized Maxwell slip flow and temperature jump boundary conditions suitable for arbitrary geometries, is adopted. Roughness geometry is modeled as a series of triangular shaped obstructions, and relative roughness from 0% to 2.65% were considered. The chosen geometry allows for direct comparison with pressure drop computations carried out, in a previous paper, under adiabatic conditions. A wide range of Mach number is considered, from nearly incompressible to chocked flow conditions. Flow conditions with Reynolds number up to around 300 were computed. The outlet Knudsen number corresponding to the chosen range of Mach and Reynolds number ranges from very low value to around 0.05, and the competing effects of rarefaction, compressibility and roughness are investigated in detail. Compressibility is found to be the most dominant effect at high Mach number, yielding even inversion of heat flux, while roughness has a strong effect in the case of rarefied flow. Furthermore, the mutual interaction between heat transfer and pressure drop is highlighted, comparing Poiseuille number values for both cooled and heated flows with previous adiabatic computations.  相似文献   

4.
针对气体-颗粒微尺度流动与传热过程开展数值模拟研究,所构建模型中气体处理为可压缩、变物性流体,并在颗粒表面采用速度滑移和温度跳跃边界条件以考虑气体稀薄效应。在数值模拟基础上,研究分析稀薄效应对颗粒与其周围气体流动与换热的影响程度,并进一步提出新的阻力系数与传热努谢尔特数关联式。研究结果表明,气体稀薄效应将减小颗粒阻力系数,同时抑制颗粒与其周围气体的传热过程。  相似文献   

5.
Thermal and hydrodynamic character of a hydrodynamically developed and thermally developing flow in trapezoidal silicon microchannels is analyzed. The continuum momentum and energy equations, with the velocity slip and temperature jump condition at the solid walls, are solved numerically in a square computational domain obtained by transformation of the trapezoidal geometry. The effects of rarefaction, aspect ratio and a parameter representing the fluid/wall interaction on thermal and hydrodynamic character of flow in trapezoidal microchannels are explored. It is found that the friction factor decreases if rarefaction and/or aspect ratio increase. It is also found that at low rarefactions the very high heat transfer rate at the entrance diminishes rapidly as the thermally developing flow approaches fully developed flow. At high rarefactions, heat transfer rate does not exhibit considerable changes along the microchannel, no matter the flow is developing or not.  相似文献   

6.
This article presents the simulation results and the effects of slip length and fractal ratio on patterned super-hydrophobic surfaces in microchannels under laminar flow conditions. The effects of using different slip length ratios and fractal ratios on patterned surfaces were simulated numerically at two Reynolds number values. Dimensionless parameters such as Nusselt number, friction factor, and performance efficiency indicator were used to study the effects of boundary conditions (i.e., surface features) on microchannel thermal performance. The results show that the flow structure within a patterned microchannel experiences flow fluctuations near the wall boundary caused by the super-hydrophobic surface. The results also indicate that patterned surfaces with high slip length enhance heat transfer performance and reduce pressure drop.  相似文献   

7.
Behnam Rahimi 《传热工程》2013,34(18):1528-1538
Natural convection gaseous slip flows in open-ended vertical parallel-plate microchannels with symmetric wall heat fluxes are numerically investigated. A second-order model, including thermal creep effects, is considered for velocity slip and temperature jump boundary conditions with variable thermophysical properties. Simulations are performed for wide range of Rayleigh numbers from 5 × 10? 6 to 5 × 10? 3 in the continuum to slip flow regime. The developing and fully developed solutions are examined by solving the Navier–Stokes and energy equations using a control volume technique. It is found that the second-order effects reduce the temperature jump and the slip velocity, whereas thermal creep strongly increases the slip velocity in both developing and fully developed regions. Moreover, the rarefaction effects increase the flow and heat transfer rates considerably, while decreasing the maximum gas temperature and friction coefficient as compared to the continuum limit. It was also shown that the axial temperature variations of the gas layer adjacent to the wall in the modeling of the thermal creep are of paramount importance and neglecting these variations, which is common in literature, leads to unphysical velocity and temperature distributions.  相似文献   

8.
A flow and heat transfer numerical simulation was performed for a 2D compressible gas flow through a microchannel in the slip regime to investigate the effects of wall roughness. The wall roughness is simulated by rectangular microelements. This effect is examined for gas flows under inlet Mach number ranging from 0.0055 to 0.202. The numerical results demonstrate that the roughness elements have a significant impact on the flow characteristics. For rarefied gases, it is found that roughness effect leads to an increase in the Poiseuille number with increasing roughness height and decreasing element spacing. The surface roughness has a more significant effect on the flow with a lower inlet Kn. Compressible gas flow is also sensitive to the height of the wall roughness elements. In addition, an increase of the relative roughness height leads to a pronounced decrease in the local heat flux for both rarefied and compressible flow. The average Nusselt numbers have a much more significant reduction for a rarefied flow than a compressible flow. The influence of wall roughness on the average heat transfer rate is smaller than that on the Poiseuille number.  相似文献   

9.
An analytical and numerical study is carried out to examine the convective heat transfer in two-dimensional pressure-driven nitrogen slip flows in long microchannels, whose length-to-height ratios are above 500. The momentum and the energy equations are solved, where variable properties, rarefaction that involves velocity slip, thermal creep and temperature jump, pressure work, and viscous dissipation are all taken into account. Nitrogen is assumed to be a perfect gas. The effects of pressure work and viscous dissipation, which are particularly significant for long microchannels, are examined by analyzing the uniform wall temperature and the uniform wall heat flux cases. It is found that the degree of rarefaction, which is characterized by the Knudsen number, is the key factor that determines the relative importance of pressure work and viscous dissipation. It is demonstrated that, for perfect gases, rarefaction promotes the conversion of internal energy to mechanical energy. Specifically, regardless of the fluid field development, pressure work and viscous dissipation cancel out in the absence of rarefaction, while pressure work is greater than viscous dissipation with rarefaction and its dominance increases as the Knudsen number increases. It is shown that the combination of pressure work and viscous dissipation makes a significant impact on the Nusselt number in both the continuum and the rarefaction cases. Therefore, it is concluded that for convective heat transfer in internal gas flows, both pressure work and viscous dissipation need to be considered in analysis.  相似文献   

10.
A universal finite Nusselt number is found for laminar slip flow heat transfer at the entrance of a conduit. The Nusselt number expression is valid for both isothermal and isoflux thermal boundary conditions and for any conduit geometry. The value of the entrance Nusselt number is found to be dependent on two nondimensional parameters that include effects of rarefaction, fluid properties, and the fluid/wall interaction.  相似文献   

11.
数值模拟了微通道受限空间内气体-近璧颗粒流动与传热过程,所建模型考虑微尺度气体的可压缩与交物性特征,且在通道和颗粒壁面采用速度滑移和温度跳跃边界条件以考虑滑移区气体动量/能量非连续效应.在此基础上,计算分析了克努森数(Kn)和颗粒偏移比对颗粒表面拖曳力系数(CD)以及传热努塞尔数(Nu)的影响规律.研究结果表明:受气体...  相似文献   

12.
Three-dimensional laminar slip-flow and heat transfer in rectangular microchannels having constant temperature walls are studied numerically using the finite-volume method for thermally and simultaneously developing flows. The Navier–Stokes and energy equations are solved with velocity slip and temperature jump at the wall. A modified convection–diffusion coefficient at the wall–fluid interface is defined to incorporate the temperature-jump boundary condition. Validity of the numerical simulation procedure is established and the effect of rarefaction on hydrodynamicaly developing flow field, pressure gradient and entrance length is analyzed. A correlation for the fully developed friction factor is presented as a function of Knudsen number (Kn) and aspect ratio (α). The influence of rarefaction on the Nusselt (Nu) number is investigated for thermally and simultaneously developing flows. The effect of velocity slip is found to increase the Nu number, while the temperature-jump tends to decrease it, and the combined effect could result in an increase or a decrease in the Nu number. In the fully developed region, there could be high as 15% increase or low as 50% decrease in Nu number is plausible for the range of parameters considered in this work.  相似文献   

13.
The effect of viscous dissipation and rarefaction on rectangular microchannel convective heat transfer rates, as given by the Nusselt number, is numerically evaluated subject to constant wall heat flux (H2) and constant wall temperature (T) thermal boundary conditions. Numerical results are obtained using a continuum based, three-dimensional, compressible, unsteady computational fluid dynamics algorithm with slip velocity and temperature jump boundary conditions applied to the momentum and energy equations, respectively. For the limiting case of parallel plate channels, analytic solutions for the thermally and hydrodynamically fully developed momentum and energy equations are derived, subject to both first- and second-order slip velocity and temperature jump boundary conditions, from which analytic Nusselt number solutions are then obtained. Excellent agreement between the analytical and numerical results verifies the accuracy of the numerical algorithm, which is then employed to obtain three-dimensional rectangular channel and thermally/hydrodynamically developing Nusselt numbers. Nusselt number data are presented as functions of Knudsen number, Brinkman number, Peclet number, momentum and thermal accommodation coefficients, and aspect ratio. Rarefaction and viscous dissipation effects are shown to significantly affect the convective heat transfer rate in the slip flow regime.  相似文献   

14.
Three-dimensional numerical analysis for fully developed incompressible fluid flow and heat transfer through triangular microchannels over the slip flow regime is simulated in this paper. In order to study the flow through the channel, the Navier–Stokes equations are solved in conjunction with slip/jump boundary conditions. The influences of Knudsen number (0.001 < Kn < 0.1), aspect ratio (0.2 < A < 4.5), and Reynolds number (1 < Re < 15) on the fluid flow and heat transfer characteristics are extensively investigated in the paper. The numerical results reveal that the rarefaction decreases the Poiseuille number, while its effect on the Nusselt number completely depends on the interaction between velocity slip and temperature jump. It is also found that the aspect ratio has an important role in the analysis, but the variation of Reynolds number is less remarkable.  相似文献   

15.
Jun Sun  Zhi-Xin Li 《传热工程》2013,34(7-8):658-666
The tangential momentum and energy accommodation coefficients (TMAC and EAC) are parameters to characterize the velocity slip and temperature jump in the gas–solid interface. To understand the wall effects on fluid flow and heat transfer in nanochannels, the accommodation coefficients for argon gas molecules and platinum wall atoms were calculated according to a proper statistical algorithm using a three-dimensional molecular dynamic method. Isothermal flows and thermal conductions were simulated in smooth and rough nanochannels, in which the roughness ranged from 0.2 nm to 1.4 nm. From the atomic viewpoint, different lattice arrangements of smooth walls would induce atomic roughness to different extents on the surface, which affected the momentum and energy exchange in gas–wall interactions and resulted in different accommodation coefficients. In channels with nanoscale roughness, the possibility of multiple gas–wall interactions were further increased so that the TMAC and EAC became much larger with more roughness.  相似文献   

16.
On the basis of Langmuir’s theory of adsorption of gases on solids, the effect of temperature jump on microscale heat transfer is investigated. A mathematical model, extended from the classical Graetz problem, is developed to analyze convective heat transfer in a microtube in various slip-flow regimes. The surface slip corrections are made by employing the Langmuir model, as well as the conventional Maxwell model. The effects of axial heat conduction are also investigated by extending the finite integral transform technique to the slip-flow case. We show that the Langmuir model always predicts a reduction in heat transfer with increasing rarefaction, as does the Maxwell model, except when the energy accommodation coefficient is relatively much smaller than that for momentum accommodation. This implies that, for most physical applications, the Reynolds analogy between heat transfer and momentum transfer is preserved in slip-flow regimes with low Mach numbers.  相似文献   

17.
In order to investigate how far the temperature-dependent fluid properties and characteristic length influence the drag coefficient and the heat flux, a three-dimensional simulation study for a slip flow around an unconfined microspherical particle has been performed. Gas properties such as density, viscosity, conductivity, and mean free path were assumed to vary with temperature. Slip velocity and temperature jump at the gas particle interface were both treated numerically by imposition of the slip boundary conditions. The effects of variable gas properties and Knudsen number on momentum and heat transfer were also taken into account. It was concluded that for microflows with high heat transfer rates, the constant fluid properties approximation is very crude. In addition, the slip velocity and temperature jump affect the heat transfer in opposite ways: a large slip on the wall increases the convection along the surface, whereas a large temperature jump decreases the heat transfer by reducing the temperature gradient at the wall. Therefore, neglecting temperature jump will result in the overestimation of the heat transfer coefficient.  相似文献   

18.
Based on the superposition principle, an analytical solution for steady convective heat transfer in a two-dimensional microchannel in the slip flow region is obtained, including the effects of velocity slip and temperature jump at the wall, which are the main characteristics of flow in the slip flow region, and viscous heating effects in the calculations. The cases of constant heat flux boundary conditions and one wall as adiabatic and the other wall at constant heat flux input are studied. The solution method is verified for the cases where micro-scale effects are neglected. The effects of viscous heating on the temperature profiles and on the heat transfer performance are analyzed in detail. It is concluded that the effect of viscous heating, like an internal energy source, heats the fluid along the flow direction and severely distorts the temperature profiles. The effects of key parameters, such as the Brinkman and Knudsen numbers, on the Nusselt number, which expresses the heat transfer performance are investigated.  相似文献   

19.
The impact of a subcooled water and n-heptane droplet on a superheated flat surface is examined in this study based on a three-dimensional model and numerical simulation. The fluid dynamic behavior of the droplet is accounted for by a fixed-grid, finite-volume solution of the incompressible governing equations coupled with the 3-D level-set method. The heat transfer inside each phase and at the solid–vapor/liquid–vapor interface is considered in this model. The vapor flow dynamics and the heat flux across the vapor layer are solved with consideration of the kinetic discontinuity at the liquid–vapor and solid–vapor boundaries in the slip flow regime. The simulated droplet dynamics and the cooling effects of the solid surface are compared with the experimental findings reported in the literatures. The comparisons show a good agreement. Compared to the water droplet, it is found that the impact of the n-heptane droplet yields much less surface temperature drop, and the surface temperature drop mainly occurs during the droplet-spreading stage. The effects of the droplet’s initial temperature are also analyzed using the present model. It shows that the droplet subcooling degree is related closely to the thickness of the vapor layer and the heat flux at the solid surface.  相似文献   

20.
This study focuses on studying the impact of multiple slip effects on the hydromagnetic Carreau nanofluid flow over an elongating cylinder considering a linear heat source and exponential space-based heat source. Suitable transformations are used in converting the highly nonlinear system of partial differential equations governing the flow into a system of ordinary differential equations and hence resolved using the Runge–Kutta method of order four coupled with the shooting method. BVP5C and RKF45 are used to compare the numerical accuracy and an excellent agreement is noted. The parallel effect of parameters on Nusselt number is studied using surface plots and the corresponding effects are scrutinized using multiple linear regression. It is observed that the linear heat source parameter, thermal slip parameter and exponential space-based heat source parameter demote the heat transfer rate. The consequence of different parameters on drag coefficient and mass transfer are quantified using a linear regression slope.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号