首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The frictional and convective heat transfer characteristics of rarified flows in rectangular microchannels, with either isoflux or isothermal boundary conditions, are evaluated subject to second-order slip boundary conditions, creep flow, viscous dissipation, and axial conduction effects. Numerical results are obtained using a continuum based, three-dimensional, compressible, unsteady computational fluid dynamics algorithm with first- and second-order slip velocity and temperature jump boundary conditions applied to the momentum and energy equations, respectively. The results, reported in the form of Poiseuille and Nusselt numbers, are found to be significant functions of aspect ratio, Knudsen number, slip model parameters, Brinkman number, and Peclet number.  相似文献   

2.
The effect of viscous dissipation and rarefaction on rectangular microchannel convective heat transfer rates, as given by the Nusselt number, is numerically evaluated subject to constant wall heat flux (H2) and constant wall temperature (T) thermal boundary conditions. Numerical results are obtained using a continuum based, three-dimensional, compressible, unsteady computational fluid dynamics algorithm with slip velocity and temperature jump boundary conditions applied to the momentum and energy equations, respectively. For the limiting case of parallel plate channels, analytic solutions for the thermally and hydrodynamically fully developed momentum and energy equations are derived, subject to both first- and second-order slip velocity and temperature jump boundary conditions, from which analytic Nusselt number solutions are then obtained. Excellent agreement between the analytical and numerical results verifies the accuracy of the numerical algorithm, which is then employed to obtain three-dimensional rectangular channel and thermally/hydrodynamically developing Nusselt numbers. Nusselt number data are presented as functions of Knudsen number, Brinkman number, Peclet number, momentum and thermal accommodation coefficients, and aspect ratio. Rarefaction and viscous dissipation effects are shown to significantly affect the convective heat transfer rate in the slip flow regime.  相似文献   

3.
The time-dependent characteristics of pressure-driven nitrogen flow in long microchannels under uniform wall heat flux input are numerically studied. The two-dimensional momentum and energy equations are solved, with variable properties, rarefaction, involving velocity slip, thermal creep and temperature jump, compressibility, and viscous dissipation effects taken into account. Two cases of unsteady convection are studied. The first one arises due to a sudden heat flux change at the channel wall and the second due to a sudden inlet pressure change. The resulting thermal field and fluid dynamics are determined, described, and discussed in detail. The approach to steady-state conditions and the overall transient response are investigated. It is found that the transient response for the case with a sudden increase in wall heat flux input is slower than that for the case with a sudden decrease in wall heat flux input. The transient response for the case with a sudden increase in inlet pressure is much faster than that for the case with a sudden decrease in inlet pressure. These trends are quantified and discussed on the basis of the underlying transport mechanisms. The difference in overall transient response is caused by the flow rate change and the energy taken up by the pressure work.  相似文献   

4.
Forced convection heat transfer in hydrodynamically and thermally fully developed flows of viscous dissipating gases in annular microducts between two concentric micro cylinders is analyzed analytically. The viscous dissipation effect, the velocity slip and the temperature jump at the wall are taken into consideration. Two different cases of the thermal boundary conditions are considered: uniform heat flux at the outer wall and adiabatic inner wall (Case A) and uniform heat flux at the inner wall and adiabatic outer wall (Case B). Solutions for the velocity and temperature distributions and the Nusselt number are obtained for different values of the aspect ratio, the Knudsen number and the Brinkman number. The analytical results obtained are compared with those available in the literature and an excellent agreement is observed.  相似文献   

5.
Three-dimensional laminar slip-flow and heat transfer in rectangular microchannels having constant temperature walls are studied numerically using the finite-volume method for thermally and simultaneously developing flows. The Navier–Stokes and energy equations are solved with velocity slip and temperature jump at the wall. A modified convection–diffusion coefficient at the wall–fluid interface is defined to incorporate the temperature-jump boundary condition. Validity of the numerical simulation procedure is established and the effect of rarefaction on hydrodynamicaly developing flow field, pressure gradient and entrance length is analyzed. A correlation for the fully developed friction factor is presented as a function of Knudsen number (Kn) and aspect ratio (α). The influence of rarefaction on the Nusselt (Nu) number is investigated for thermally and simultaneously developing flows. The effect of velocity slip is found to increase the Nu number, while the temperature-jump tends to decrease it, and the combined effect could result in an increase or a decrease in the Nu number. In the fully developed region, there could be high as 15% increase or low as 50% decrease in Nu number is plausible for the range of parameters considered in this work.  相似文献   

6.
Subsonic gas convective heat transfer in a microtube with a constant cross-sectional area and uniform wall temperature is investigated both analytically and numerically. First, the effect of rarefaction on heat transfer characteristics, at a distance from the inlet where Nu becomes constant, is analytically investigated for two cases: (i) including and (ii) neglecting the viscous dissipation effect. An exact solution for Nu in fully developed flow is presented for the case without viscous dissipation, while a closed-form solution for the asymptotic Nu is also provided for the case with viscous dissipation. Next, a numerical model is employed to investigate the simultaneous effects of rarefaction, viscous dissipation, and axial conduction for developing hydrodynamic and temperature conditions. The Nusselt number is substantially affected by viscous dissipation, rarefaction and axial conduction.  相似文献   

7.

This article examines the role of slip conditions within surface-embedded microchannels for reducing entropy production of external flows with convective heat transfer. Viscous dissipation of mechanical energy into internal energy within the boundary layer leads to pressure losses and other irreversible losses of energy availability. These exergy losses entail additional input power needed to deliver a fixed mass flow across the surface, subject to a specified rate of heat transfer to/from the wall. By selectively altering geometrical and surface parameters which minimize the net entropy production, the benefits of drag reduction due to the slip-flow conditions can outweigh the higher irreversibility arising from added microchannel area. Predicted results illustrate the changes of optimal Reynolds number and entropy generation number with varying surface parameters for embedded parallel and diverging microchannels. Based on these results, it is viewed that surface micro-profiling offers a useful new technique of taking advantage of slip-flow microfluidic conditions for reducing drag and simultaneously increasing heat transfer effectiveness in external flows.  相似文献   

8.
In this study, laminar forced convective heat transfer of a Newtonian fluid in a micropipe is analyzed by taking the viscous dissipation effect, the velocity slip and the temperature jump at the wall into account. Hydrodynamically and thermally fully developed flow case is examined. Two different thermal boundary conditions are considered: the constant heat flux (CHF) and the constant wall temperature (CWT). Either wall heating (the fluid is heated) case or wall cooling (the fluid is cooled) case is examined. The Nusselt numbers are analytically determined as a function of the Brinkman number and the Knudsen number. Different definitions of the Brinkman number based on the definition of the dimensionless temperature are discussed. It is disclosed that for the cases studied here, singularities for the Brinkman number-dependence of the Nusselt number are observed and they are discussed in view of the energy balance.  相似文献   

9.
The present study examines laminar forced convective heat transfer of a Newtonian fluid in a microchannel between two parallel plates analytically. The viscous dissipation effect, the velocity slip and the temperature jump at the wall are included in the analysis. Both hydrodynamically and thermally fully developed flow case is examined. Either the hot wall or the cold wall case is considered for the two different thermal boundary conditions, namely the constant heat flux (CHF) and the constant wall temperature (CWT). The interactive effects of the Brinkman number and the Knudsen number on the Nusselt numbers are analytically determined. Different definitions of the Brinkman number based on the definition of the dimensionless temperature are discussed. It is disclosed that for the cases studied here, singularities for the Brinkman number-dependence of the Nusselt number are observed and they are discussed in view of the energy balance.  相似文献   

10.
A numerical simulation for studying fluid flow and heat transfer characteristics in microchannels at slip flow regime with consideration of slip and temperature jump is studied. The wall roughness is simulated in two cases with periodically distributed triangular microelements and random shaped micro peaks distributed on the wall surfaces. Various Knudsen numbers have used to investigate the effects of rarefaction. The numerical results have also checked with available theoretical and experimental relations and good agreements has achieved. It has been found that rarefaction has more significant effect on flow field in microchannels with higher relative roughness. The negative influence of roughness on fluid flow and heat transfer found to be the friction factor increment and Nusselt number reduction. In addition high influence of roughness distribution and shape has been shown by a comparison of Poiseuille and Nusselt numbers for tow different cases.  相似文献   

11.
The present work investigates the developing fluid flow and heat transfer through a wavy microchannel with numerical methods. Governing equations including continuity, momentum and energy with the velocity slip and temperature jump conditions at the solid walls are discretized using the finite-volume method and solved by SIMPLE algorithm in curvilinear coordinate. The effects of creep flow and viscous dissipation are assumed. The numerical results are obtained for various Knudsen numbers. The results show that Knudsen number has declining effect on both the Cf.Re and Nusselt number on the undeveloped fluid flow. Significant viscous dissipation effects have been observed for large Knudsen number. Also, viscous dissipation causes a singular point in Nusselt profiles.  相似文献   

12.
Based on the superposition principle, an analytical solution for steady convective heat transfer in a two-dimensional microchannel in the slip flow region is obtained, including the effects of velocity slip and temperature jump at the wall, which are the main characteristics of flow in the slip flow region, and viscous heating effects in the calculations. The cases of constant heat flux boundary conditions and one wall as adiabatic and the other wall at constant heat flux input are studied. The solution method is verified for the cases where micro-scale effects are neglected. The effects of viscous heating on the temperature profiles and on the heat transfer performance are analyzed in detail. It is concluded that the effect of viscous heating, like an internal energy source, heats the fluid along the flow direction and severely distorts the temperature profiles. The effects of key parameters, such as the Brinkman and Knudsen numbers, on the Nusselt number, which expresses the heat transfer performance are investigated.  相似文献   

13.
A two dimensional numerical simulation is performed for incompressible and compressible fluid flows through microchannels in slip flow regime with consideration of slip and temperature jump boundary conditions. The wall roughness is simulated in two cases with triangular microelements and random shaped micro peaks distributed on wall surfaces to study the effects of roughness shape and distribution on the flow field. Various Mach and Knudsen numbers have been used to investigate the effects of rarefaction as well as compressibility. It is found that rarefaction has a more significant effect on the flow field in microchannels with higher relative roughness. It is also found that the effect of compressibility will be more noticeable when relative roughness increases. In addition a high influence of roughness distribution and shape can be seen for both compressible and incompressible flows. The numerical results have also been checked with available theoretical and experimental relations and a good agreement has been achieved.  相似文献   

14.
High pressure drop and high length to hydraulic diameter ratios yield significant compressibility effects in microchannel flows, which compete with rarefaction phenomena at the smaller scale. In such regimes, flow field and temperature field are no longer decoupled. In presence of significant heat transfer, and combined with the effect of viscous dissipation, this yields to a quite complex thermo-fluid dynamic problem. A finite volume compressible solver, including generalized Maxwell slip flow and temperature jump boundary conditions suitable for arbitrary geometries, is adopted. Roughness geometry is modeled as a series of triangular shaped obstructions, and relative roughness from 0% to 2.65% were considered. The chosen geometry allows for direct comparison with pressure drop computations carried out, in a previous paper, under adiabatic conditions. A wide range of Mach number is considered, from nearly incompressible to chocked flow conditions. Flow conditions with Reynolds number up to around 300 were computed. The outlet Knudsen number corresponding to the chosen range of Mach and Reynolds number ranges from very low value to around 0.05, and the competing effects of rarefaction, compressibility and roughness are investigated in detail. Compressibility is found to be the most dominant effect at high Mach number, yielding even inversion of heat flux, while roughness has a strong effect in the case of rarefied flow. Furthermore, the mutual interaction between heat transfer and pressure drop is highlighted, comparing Poiseuille number values for both cooled and heated flows with previous adiabatic computations.  相似文献   

15.
A regular two-parameter perturbation analysis is presented here to study the effects of both viscous dissipation and pressure stress on natural convection flows. Four different vertical flows have been analyzed, those adjacent to an isothermal surface and uniform heat flux surface, a plane plume and flow generated from a horizontal line energy source on a vertical adiabatic surface, or wall-plume. For high gravity levels, stress work effects may be important for gases at very low temperatures, and for high Prandtl number liquids. Significant changes in heat transfer and flow quantities are observed even at moderate values of the perturbation parameters. For the entire range of Prandtl number values considered, the viscous dissipation term is seen to inhibit heat transfer from the surface for heated upward flows. The pressure term enhances heat transfer from the surface for lower Prandtl numbers. However, this effect is seen to reverse at Pr = 100, for both the isothermal and uniform flux surfaces. It is observed that viscous dissipation effects on heat transfer are much smaller than those due to the pressure stress, for many practical circumstances.  相似文献   

16.
This article develops a new technique of reducing exergy losses of external viscous flow over surfaces, based on optimized microchannels embedded within the surface. The rate of entropy production and loss of available optimized energy are formulated by an integral solution and modified Blasius profiles of boundary layer flow. The optimized number of microchannels, width and height of each microchannel and spacing between microchannels involve a selective compromise between added heat exchange due to surface area, together with reduced friction through slip conditions within each microchannel. Mixed Knudsen numbers across each microchannel require simultaneous modelling of both slip‐flow and no‐slip conditions at the wall. Results involving the minimal entropy production and optimized microchannel profiles are presented and compared to other benchmark results involving classical macro‐scale configurations. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
Two-dimensional compressible momentum and energy equations are solved to obtain the heat transfer characteristics of gaseous flows in micro-channels with constant heat flux for which the value is negative for no-slip flow. The numerical methodology is based on the Arbitrary-Lagrangian-Eulerian method. The computations are performed for channels with constant heat flux ranging from ?104 to ?102 W/m2. The channel height ranges from 10 to 100 μ m and the aspect ratio of the channel height and length is 200. The stagnation pressure is chosen such that the exit Mach number ranges from 0.1 to 0.7. The outlet pressure is fixed at the atmosphere. The wall and bulk temperatures in micro-channels with negative heat flux are compared with those of positive heat flux cases obtained in our previous work and also those of the incompressible flow in a conventional sized channel. In the case of fast flow, temperatures normalized by heat flux have different trends whether heat flux value is positive or negative. A correlation for the prediction of the wall temperature of the gaseous flow in the micro-channel is proposed. The rarefaction effect is investigated for the cases of channel height of 10 μ m with slip boundary conditions. The magnitudes of viscous dissipation term and compressibility term are also investigated. The effect of each term on heat transfer characteristics is discussed.  相似文献   

18.
This study is an extension of the Graetz problem to include the rarefaction effect, viscous dissipation term and axial conduction with constant-wall-heat-flux thermal boundary condition. The energy equation is solved analytically by using general eigenfunction expansion. The temperature distribution and the local Nusselt number are determined in terms of confluent hypergeometric functions. The effects of the rarefaction, axial conduction and viscous dissipation on the local Nusselt number are discussed in terms of dimensionless parameters such as the Knudsen number, Peclet number and Brinkman number.  相似文献   

19.
In this paper we give analytical similarity solutions of the Navier–Stokes equations coupled with energy equation of Newtonian fluid in a microchannel between two parallel plates taking into account the effects of viscous dissipation, the velocity slip and the temperature jump at the wall. Two different thermal boundary conditions are considered: the constant heat flux (CHF) and the constant wall temperature (CWT). We provide new similarity transformations for the governing equations and derive the expressions of Poiseuille number (Po) and Nusselt number (Nu). Then, the homotopy analysis method (HAM) is employed to solve the nonlinear differential equations with related boundary conditions. Both the dimensionless analytical expressions of velocity and temperature are obtained. The rarefaction effects on velocity distribution and flow friction are exhibited. The interactive effects of the Brinkman number (Br) and the Knudsen number (Kn) on Nu are analytically studied for both the CHF and CWT cases.  相似文献   

20.
Extended Graetz problem in microchannel is analyzed by using eigenfunction expansion to solve the energy equation. The hydrodynamically developed flow is assumed to enter the microchannel with uniform temperature or uniform heat flux boundary condition. The effects of velocity and temperature jump boundary condition on the microchannel wall, streamwise conduction and viscous dissipation are all included. From the temperature field obtained, the local Nusselt number distributions are shown as the dimensionless parameters (Peclet number, Knudsen number, Brinkman number) vary. The fully developed Nusselt number for each boundary condition is obtained also in terms of these parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号