首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The film cooling performance of chevron holes with different inclination angles and exit lateral diffusion angles has been studied experimentally and numerically. The inclination angles include 35° and 55°. The exit lateral diffusion angles include 20° and 25°. The film cooling effectiveness, heat transfer coefficient and discharge coefficient were measured on a flat plate model by transient liquid crystal measurement technique under four blowing ratios. The results show that the large inclination angle reduces the film cooling effectiveness. The influence of diffusion angle has two aspects: the large diffusion angle leads to mainstream ingestion and decreases film cooling effectiveness at M=1.0 and 1.5; however, the large diffusion angle increases the film cooling effectiveness at high blowing ratio of 2.0, because the larger hole exit area decreases the normal momentum component of the film jet. The large inclination angle decreases the heat transfer coefficient in the right downstream region at M=0.5 and 1.0. The large diffusion angle enhances the heat transfer in the right downstream of the holes in M=0.5~1.5 conditions. The chevron hole with large inclination angle generally has the highest discharge coefficient.  相似文献   

2.
An experimental investigation on cooling performances of integrally impingement/effusion cooling configurations with film cooling holes angled normal to the mainstream flow is conducted. The adiabatic film cooling effectiveness and the overall cooling effectiveness are measured on a polycarbonate test plate and a stainless steel plate respectively. Effects of the blowing ratio (ranged from 0.6 to 2.4), multi-hole arrangement (inline and staggered), hole-to-hole pitch ratio (ranged from 3 to 5) and jet-to-target spacing ratio (ranged from 2 to 4) on the cooling performance are examined. In addition, jet impingement heat transfer is measured to evaluate the dense array jet impingement behaviors with local extraction of coolant via effusion holes. A new parameter named corrected blowing ratio is introduced in the present to evaluate the cooling effectiveness for different effusion or impingement–effusion configurations under a given quantity of cooling air. In an integrally impingement–effusion cooling configuration, multiple jet impingement with local extraction of coolant via effusion holes is able to produce higher overall heat transfer under lower jet-to-target spacing and denser jet array. The action of additional jet impingement heat transfer on improving overall cooling performance is highly dependant on the blowing ratio, multi-hole arrangement and jet-to-target spacing, which seem to be behaved superior in the situations where the film cooling effect isolating the wall surface from the hot mainstream is weak. For an integrally impingement–effusion cooling configuration, the densest hole-to-hole array is favorable in the situations where the coolant mass flow rate per unit area of cooled surface is low. As the coolant mass flow rate per unit area of cooled surface increases, the hole-to-hole pitches could be gradually enlarged to make effective utilization of array jet impingement.  相似文献   

3.
Film cooling performance about a row of dual-fanned holes with injection angles of 30°, 60 ° and 90° were experimentally investigated at blowing ratios of 1.0 and 2.0. Dual-fanned hole is a novel shaped hole which has both inlet expansion and outlet expansion. A transient thermochromic liquid crystal technique was used to reveal the local values of film cooling effectiveness and heat transfer coefficient. The results show that injection angles have strong influence on the two dimensional distributions of film cooling effectiveness and heat transfer coefficient. For the small injection angle of 30 degree and small blowing ratio of 1.0, there is only a narrow spanwise region covered with film. The increase of injection angle and blowing ratio both leads to the enhanced spanwise film diffusion, but reduced local cooling ability far away from the hole. Injection angles have comprehensive influence on the averaged film cooling effectiveness for various x/d locations. As injection angles are 30 and 60 degree, two bands of high heat transfer coefficients are found in mixing region of the gas and coolant. As injection angle increases to 90 degree, the mixing leads to the enhanced heat transfer region near the film hole. The averaged heat transfer coefficient increases with the increase of injection angle.  相似文献   

4.
In this study, four novel film cooling hole designs, all based on cylindrical holes, are numerically evaluated, and compared with those of a simple cylindrical hole and a laterally-diffused shaped hole. Film cooling effectiveness and surrounding thermal and flow fields are documented for operation with various blowing ratios. It is shown that the two-stage cylindrical hole can improve film cooling effectiveness at higher blowing ratios. The primary hole with two secondary holes can enhance film cooling performance by creating anti-kidney vortex pairs that will weaken jet liftoff caused by the kidney vortex pair that is created by the primary hole. The tri-circular shaped hole provides better film cooling effectiveness values only near the hole, but worse at downstream positions. The two-stage structure for the tri-circular shaped hole provides better film coverage because it changes the flow structure inside the delivery channel and decreases jet penetration into the passage flow.  相似文献   

5.
To improve the film cooling performance by shaped injection holes for the turbine blade leading edge region, we have investigated the flow characteristics of the turbine blade leading edge film cooling using five different cylindrical body models with various injection holes, which are a baseline cylindrical hole, two laidback (spanwise-diffused) holes, and two tear-drop shaped (spanwise- and streamwise-diffused) holes, respectively. Mainstream Reynolds number based on the cylinder diameter was 7.1 × 104 and the mainstream turbulence intensities were about 0.2%. The effect of injectant flow rates was studied for various blowing ratios of 0.7, 1.0, 1.3 and 1.7, respectively. The density ratio in the present study is nominally equal to one. Detailed temperature distributions of the cylindrical body surfaces are visualized by means of an infrared thermography (IRT). Results show that the conventional cylindrical holes have poor film cooling performance compared to the shaped holes. Particularly, it can be concluded that the laidback hole (Shape D) provides better film cooling performance than the other holes and the broader region of high effectiveness is formed with fairly uniform distribution.  相似文献   

6.
Experiments have been performed to investigate the effect of mainstream turbulence on the three-dimensional distribution of the full coverage film cooling effectiveness for two enlarged actual twisted vanes with cylindrical or shaped holes. The film cooling effectiveness was measured by transient liquid crystal technique at mainstream turbulence intensities of 2%, 9% and 15%. The mass flow rate ratios range from 5.5% to 12.5%. There are 3, 8 and 7 rows of film holes on the suction side, leading edge and pressure side, respectively. Results show that for the cylindrical hole vane the high mainstream turbulence intensity decreases the film cooling effectiveness in the top region and down region of pressure side in the low mass flow rate ratio of 5.5%, while the effect is opposite in the high mass flow rate ratio of 12.5%. The film cooling effectiveness in the middle region of pressure side decreases obviously with the increase of the turbulence at the low mass flow rate ratio of 5.5%, while the influence of increasing turbulence weakens gradually with the increase of mass flow rate ratio. Moreover, the high mainstream turbulence improves the film cooling effectiveness in the further downstream of the holes on suction side at the high mass flow rate ratio of 12.5%. For the shaped hole vane, the increase of mainstream turbulence decreases the film cooling effectiveness at all mass flow rate ratios. This study reveals the influence rule of the mainstream turbulence on the film cooling effectiveness in the different regions of the three-dimensional vane surface. The results would guide the designs of engineering heat transfer with application in gas turbine blade/vane cooling.  相似文献   

7.
An experimental investigation on overall heat transfer performance of a rectangular channel, in which one wall has periodically placed oblique ribs to enhance heat exchange and cylindrical film holes to bleed cooling air, has been carried out in a hot wind tunnel at different mainstream temperatures, hot mainstream Reynolds numbers, coolant Reynolds numbers and blowing ratios. To describe the cooling effect of combined external coolant film with the internal heat convection enhanced by the ribs, the overall cooling effectiveness at the surface exposed in the mainstream with high temperature was calculated by the surface temperatures measured with an infrared thermal imaging system. The total mass flow rate of cooling air through the coolant channel was regulated by a digital mass flow rate controller, and the blowing ratio passing through the total film holes was calculated based on the measurements of another digital-type mass flow meter. The detailed distributions of overall cooling effectiveness show distinctive peaks in heat transfer levels near the film holes, remarkable inner convective heat transfer effect over entire channel surface, and visible conductive heat transfer effect through the channel wall; but only when the coolant Reynolds number is large enough, the oblique rib effect can be detected from the overall cooling effectiveness; and the oblique bleeding hole effect shows the more obvious trend with increasing blowing ratios. Based on the experimental data, the overall cooling effectiveness is correlated as the functions of Rem (Reynolds number of hot mainstream) and Rec (Reynolds number of internal coolant flow at entrance) for the parametric conditions examined.  相似文献   

8.
The flow and heat transfer mechanisms of mist/air film cooling are studied in this paper with three hole types under three blowing ratios. The velocity vectors and three-dimensional contours of the vortices are shown in this paper in order to investigate the mist/air cooling characters with different hole types. Both the span averaged and centerline film cooling effectiveness are studied in this paper to compare the cooling performance of three cooling hole types.

Mist/air cooling performances of cylindrical hole, fan-shaped hole, and console hole are studied numerically. Flow structures of mist/air jets are studied. Both centerline and span averaged film cooling effectiveness are studied. Results show that the kidney vortex uplifts the mists further away from the flat plate and the antikidney vortex uplifts the mists near the lateral edge of the hole gradually. Mists enhancement on cooling effectiveness is significantly impaired at a higher blowing ratio in cylindrical hole and fan-shaped hole cases. The cooling effectiveness can maintain a relatively high value at each blowing ratio in console hole cases.  相似文献   


9.
In the present paper, a numerical investigation is conducted on film cooling performance from novel sister-shaped single-hole schemes. Based on the sister hole film cooling technique, shaped holes are formed by merging discrete sister holes to a primary hole. Simulations are performed at four blowing ratios of 0.25, 0.5, 1, and 1.5. The novel-shaped holes resulted in a significant reduction in the jet liftoff effect in comparison with a cylindrical and a forward-diffused shaped hole. Moreover, film cooling effectiveness is notably increased at the high blowing ratios of 1 and 1.5.  相似文献   

10.
Film cooling combined with internal impingement cooling is one of the most effective technologies to protect the gas turbine vanes and blades from the hot gas. In this study, conjugate heat transfer CFD study was undertaken for a flat plate with combined film cooling and impingement cooling. An experiment on conjugate heat transfer of a flat plate with combined film and impingement cooling was performed to validate the code. Then the effects of several parameters including Biot number, blowing ratio, film hole shape and impingement hole diameter on the overall cooling effectiveness were numerically studied. The results show that for a specific combined cooling scheme and a given blowing ratio, the coolant potential can be reasonably allocated to the internal and the external cooling to achieve the overall cooling effectiveness. As the blowing ratio increases, the overall cooling effectiveness trends to reach a maximum value. For different film hole geometrical, the maximum values of the overall cooling effectiveness at high blowing ratio approximate to the same value. At a given mass flow rate of coolant, the increase of the impingement hole diameter leads to the reduction of the overall cooling effectiveness.  相似文献   

11.
To verify the applicability of upstream ribs in film cooling, the present numerical study examines heat transfer characteristics and flow field for ribs located upstream of the film hole. Five ribs including bilaterally truncated ribs, centrally truncated ribs, and continuous ribs are explored with the smooth case at two blowing ratios and fixed crossflow Reynolds number. The results show that the film cooling effectiveness of cases with ribs outperforms the case without rib at a low blowing ratio. Centrally truncated ribs and continuous ribs provide superior cooling effectiveness than bilaterally truncated ribs and smooth cases. The introduction of ribs makes the distribution of the heat transfer coefficient (HTC) uneven after the hole. Among these, centrally truncated ribs increased the HTC, while bilaterally truncated ribs reduce the HTC in the far hole area at a high blowing ratio. It is found that anti-kidney-shaped vortex pairs are generated between two adjacent jets for centrally truncated rib cases, while they are generated in front of the jets for bilaterally truncated rib cases. For continuous rib, the impingement of the mainstream gas on the jet leads to a reduction in strength of the kidney-shaped vortex, which allows the coolant to form a better coverage.  相似文献   

12.
在平板表面分别开设了圆柱孔、展向扩张孔和收缩扩张孔。对比研究了3种孔型的纯空气气膜冷却和水雾/空气气膜冷却特性。在3种吹风比:0.66、1.04、1.44下展开研究。将圆柱孔的数值计算结果与文献中的实验结果进行对照以验证水雾/空气冷却数值计算方法的正确性。对3种孔型下冷却气体混合物的无量纲速度矢量图和部分水雾颗粒的运动轨迹进行了比较和分析。对3种孔型中心线和展向平均气膜冷却效率进行了比较和分析。结果表明:圆柱孔和展向扩张孔射流形成的肾形涡将水雾颗粒抬离平板表面。收缩扩张孔射流形成的肾形涡增强了水雾颗粒的展向扩散并将靠近孔口两侧区域的水雾颗粒逐渐抬离平板表面。对于圆柱孔和展向扩张孔,其射流形成的肾形涡削弱了水雾颗粒对于展向平均气膜冷却效率的提高作用,收缩扩张孔水雾/空气冷却的展向平均气膜冷却效率在3种吹风比下均大于0.6,当吹风比为1.44时,收缩扩张孔的展向平均气膜冷却效率约为展向扩张孔的2倍,圆柱孔的4倍。2种冷却方式下,在吹风比从1.04增大到1.44时,展向扩张孔中心线气膜冷却效率降低0.3左右,而收缩扩张孔中心线冷却效率的降幅小于0.1。  相似文献   

13.
基于某F级燃气轮机第一级动叶栅的数值模拟,以实现动叶端壁气膜冷却全覆盖为目标,分析定常下动叶端壁的流动与传热特征,拟综合考虑端壁二次流结构特征与级间封严冷气泄漏流的影响,将端壁划分为四个具有不同流动传热特征的区域,并据此设计了叶根端壁仅13孔数的离散气膜孔布置方案各区域采取不同的冷却方式根据不同吹风比下的研究结果发现:吹风比为0.75时端壁冷却有效度均值在0.2以上,实现了全端壁冷却的目标;前缘附近端壁冷却效果受吹风比影响显著,吹风比在0.75以上时冷却有效度达到0.5以上;除近压力面区域,气膜冷却效果随吹风比的增大而提高。  相似文献   

14.
气膜孔形状对涡轮叶片气膜冷却效果的影响   总被引:7,自引:0,他引:7       下载免费PDF全文
基于控制容积法对三维定常不可压缩N-S方程进行离散,采用非结构化网格及两层k-ε湍流模型,在吹风比M为0.6和1.2的情况下,数值模拟了气膜孔几何形状对涡轮叶片气膜冷却效果的影响,得到了气膜孔附近的流场分布.所选孔形为圆柱孔、前向扩张孔、开槽前向扩张孔及新型缩放槽缝孔.结果表明:圆柱孔的冷却效率随着吹风比的增加而显著地降低;开槽前向扩张孔的冷却效率优于圆柱孔和前向扩张孔;缩放槽缝孔在不同吹风比下的冷却效率均高于其它3种孔形,缩放槽缝孔和开槽前向扩张孔不同程度地抑制了反向涡旋对的产生,提高了射流对壁面的贴附性,增强了壁面的冷却效果.  相似文献   

15.
Three different kinds of coolant chamber configuration for film cooling are proposed to develop the swirling coolant flow at blowing ratios ranging from 0.5 to 2.0. The results show that the difference of film cooling effectiveness for three kinds of coolant chamber configuration is little at low blowing ratio, but the advantage of swirling film cooling becomes obviously with the increase of blowing ratio. When the blowing ratio is 2.0, the jet momentum of original coolant chamber configuration is large and uniform, which leads to the lowest cooling effectiveness due to the formation of a strong kidney vortex. The first coolant chamber configuration has a low jet momentum region at upstream of the film hole, the coolant in this region interacts with high temperature mainstream and bypasses the large jet momentum coolant to attach cooling surface at downstream. The second coolant chamber configuration is sprayed with the structure of unidirectional vortex, which forms a vortex pressing on other vortex, making the coolant in pressed vortex attach surface better, producing the best coverage and the higher film cooling effectiveness.  相似文献   

16.
采用高精度红外热像仪测量了平板绝热气膜冷却效率,比较了双叉排孔和单排孔气膜冷却效率,分析了吹风比(M=0.65,1.0,1.5)和脉动频率(St=0,0.01,0.015,0.025)以及孔间作用对气膜冷却效率的影响,结合数值计算得到的瞬态流场和温度场分析了脉动射流气膜冷却下的流动传热机理。结果表明:在稳态射流工况下,单排孔的气膜冷却效率随着吹风比的增加而减小,双叉排孔的气膜冷却效率却随着吹风比的增加而增大;在脉动射流时,单排和双叉排孔的气膜冷却效率在低吹风比下低于稳态射流,在高吹风比下,脉动射流对气膜冷却效率的影响减小,且低频脉动射流气膜冷却效率略高于稳态射流。  相似文献   

17.
The present study aims to improve cooling performance over the leading edge surface with the high temperature and high thermal stress by the introduction of trenched holes. Three staggered rows of leading-edge film cooling holes with different trench arrangements and hole orientations are included under blowing ratios of 0.5, 1.0, 1.5, and 2.0, compared with round-hole cases. Under the conditions of leading-edge flow patterns and convex curvature, the trenched hole with 2D width plays a role of “protection” of coolant against the impinging hot gas at a large range of blowing ratios. This contributes to the better lateral spread of coolant and cooling performance. Besides, the trenched holes narrow the regions with a high heat transfer coefficient and reduce the detrimental heating on the surface. Compared with round holes, the trenched holes guarantee the downstream coolant coverage and higher cooling performance at a larger inclined angle, in spite of the changed compound angles.  相似文献   

18.
运用数值模拟的手段,从流动特性和冷却特性两方面评价了各种开槽气膜冷却孔结构的优劣。从流动的机理揭示了在相同的槽深下,不同的横槽结构对改善气膜冷却效率和流量系数的影响,并比较了在气膜孔出口和入口均开有横槽后对流动和冷却特性的影响。结果表明:开横槽后,气膜孔出口下游的冷却效率得到不同程度的改善,吹风比越大,改善的程度越明显。在横槽下游5D-10D的范围内,冷却效率的改善程度最大;在气膜孔出入口处均开有斜横槽的结构和用圆角过渡气膜孔入口处的横槽均是提高气膜冷却效率和减小气膜孔流动阻力的有效措施,而在气膜孔出口处的横槽用圆角过渡则不利于改善气膜冷却效果。  相似文献   

19.
Numerical approach have been conducted on a flat, three-dimensional discrete-hole film cooling geometries that included the mainflow, injection tubes, impingement chamber, and supply plenum regions. The effects of blowing ratio and hole’s shape on the distributions of flow field and adiabatic film cooling effectiveness over a flat plate collocated with two rows of injection holes in staggered-hole arrangement were studied. The blowing ratio was varied from 0.3 to 1.5, while the density ratio of the coolant to mainstream is kept at 1.14. The geometrical shapes of the vent of the cooling holes are cylindrical round, simple angle (CYSA), forward-diffused, simple angle (FDSA) and laterally diffused, simple angle (LDSA). Diameter of different shape of cooling holes in entrance surface are 5.0 mm and the injection angle with the main stream in streamwise and spanwise are 35° and 0° respectively. Ratio of the length of the cooling holes and the diameter in the entrance surface is 3.5. The distance between the holes in the same row as well as to the next row is three times the diameter of hole in the entrance surface.The governing equation is the fully elliptic, three-dimensional Reynolds-averaged Navier–Stokes equations. The mesh used in the finite-volume numerical computation is the multi-block and body-fitted grid system. The simulated streamwise distribution of spanwise-averaged film cooling effectiveness exhibited that low Reynolds number kε model can give close fit to the experimental data of the previous investigators. Present study reveals that (1) the geometrical shape of the cooling holes has great effect on the adiabatic film cooling efficiency especially in the area near to the cooling holes. (2) The thermal-flow field over the surface of the film-cooled tested plate dominated by strength of the counter-rotating vortex pairs (CRVP) that generated by the interaction of individual cooling jet and the mainstream. For LDSA shape of hole, the CRVP are almost disappeared. The LDSA shape has shown a highest value in distribution of spanwise-averaged film cooling effectiveness when the blowing ratio increased to 1.5. It is due to the structure of the LDSA is capable of reducing the momentum of the cooling flow at the vent of the cooling holes, thus reduced the penetration of the main stream. (3) The structure of the LDSA can also increase the lateral spread of the cooling flow, thus improves the spanwise-averaged film cooled efficiency.  相似文献   

20.
The aim of the present study is conducting the numerical approach to a combination of internal jet impingement and external film cooling over a flat plate. A multi-block three-dimensional Navier-Stokes code, CFX 4.4, with k-e turbulence model is used to simulate this complicated thermal-flow structure induced by the interaction of coolant jet and hot cross mainstream. By assuming the adiabatic wall boundary condition on the tested film-cooled plate, both the local and the spanwise-averaged adiabatic film cooling effectiveness are evaluated for comparison of the cooling performance at blowing ratios of Br=0.5, 1.0, and 1.5. Film flow data were obtained from a row of five cylindrical film cooling holes, inclined in angle of 35?and 0?in direction of streamwise and spanwise, respectively. The film cooling hole spacing between adjacent holes is 15 mm for all the holes. Before the coolant flow being injected through individual cooling hole then encountered with the mainstream, an impingement chamber containing an impingement plate with 43 holes is located on the path of coolant flow. Present study also focused on the effect of impingement spacing, 10mm, 20mm, and 30mm. Compare the results, we find the impingement jet has a significant effect on the adiabatic film cooling effectiveness. As the coolant impingement spacing is fixed, results indicated that higher blowing ratio would enhance the local and the spanwise-averaged adiabatic film cooling effectiveness. Moreover, neither uniform nor parabolic distribution of pressure distribution are observed within the coolant hole-pipe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号