首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An improved moiré deflectometry phase-shifting technique is presented. A squared grating is used to multiplex the information of the deflections in two orthogonal directions in one image. This procedure avoids the need to rotate the gratings to obtain complete deflection information. However, the use of these gratings makes impossible the application of standard phase-shifting algorithms. Specifically, the problems associated with the nonsinusoidal profile of the moiré fringes and the low-modulation areas produced by the square gratings are solved. A modified moiré deflectometry phase-shifting method is designed to deal with these problems. In addition, a method to obtain the zero order of the prismatic effect is developed. The technique configures a complete and automatic method of mapping ray deflections. From them the refractive power maps can be derived. Experimental results obtained with a progressive-addition lens are shown.  相似文献   

2.
A model for the calculation of liquid–liquid interfacial energies is presented. It is based on the assumption that the interface can be treated as a separate thermodynamic phase. Its derivation has been performed in an analogous way as the derivation of the Butler equation for the surface tension of liquid alloys. It requires as input parameters the excess free energy and the compositions of the bulk phases as functions of temperature. In addition, it also requires the partial molar volumes of the components. Comparison with existing experimental data for Al–Pb, Al–In, and Cu–Co in a non-equilibrium state shows very good agreements. For Al–Bi, the experimental data are either over or underestimated by a factor of ≈1.7, depending on which of the two thermodynamic assessments is used. For the Al-based systems, the calculated Al-mole fraction in the interface layer is close to the arithmetic average of the Al-mole fractions of the bulk phases.  相似文献   

3.
Zhang  Honglin  Sun  Mingyue  Ma  Dongping  Xu  Bin  Wang  Taijiang  Li  Dianzhong  Li  Yiyi 《Journal of Materials Science》2021,56(19):11469-11484
Journal of Materials Science - The evolution of heterogeneous microstructure and mechanical properties of a 12Cr–10Ni–Mo–Ti maraging steel was investigated at different aging...  相似文献   

4.
The Grüneisen parameter is analyzed for dense gaseous and liquid argon. It is found that, similarly to solids, in the liquid region this parameter is nearly independent of temperature along isochores, whereas, contrary to its behaviour for solids, it increases with pressure and density along isotherms.  相似文献   

5.
Trace gas sensors have a wide range of applications including air quality monitoring, industrial process control, and medical diagnosis via breath biomarkers. Quartz-enhanced photoacoustic spectroscopy and resonant optothermoacoustic detection are two techniques with several promising advantages. Both methods use a quartz tuning fork and modulated laser source to detect trace gases. To date, these complementary methods have been modeled independently and have not accounted for the damping of the tuning fork in a principled manner. In this paper, we discuss a coupled system of equations derived by Morse and Ingard for the pressure, temperature, and velocity of a fluid, which accounts for both thermal effects and viscous damping, and which can be used to model both types of trace gas sensors simultaneously. As a first step toward the development of a more realistic model of these trace gas sensors, we derive an analytic solution to a pressure–temperature subsystem of the Morse–Ingard equations in the special case of cylindrical symmetry. We solve for the pressure and temperature in an infinitely long cylindrical fluid domain with a source function given by a constant-width Gaussian beam that is aligned with the axis of the cylinder. In addition, we surround this cylinder with an infinitely long annular solid domain, and we couple the pressure and temperature in the fluid domain to the temperature in the solid. We show that the temperature in the solid near the fluid–solid interface can be at least an order of magnitude larger than that computed using a simpler model in which the temperature in the fluid is governed by the heat equation rather than by the Morse–Ingard equations. In addition, we verify that the temperature solution of the coupled system exhibits a thermal boundary layer. These results strongly suggest that for computational modeling of resonant optothermoacoustic detection sensors, the temperature in the fluid should be computed by solving the Morse–Ingard equations rather than the heat equation.  相似文献   

6.
A simple, rapid and environmentally friendly method has been developed for the determination of four triazole fungicides (myclobutanil, tebuconazole, triadimenol, hexaconazole) in water samples by dispersion–solidification liquid–liquid microextraction coupled with high performance liquid chromatography-diode array detection. Several variables that affect the extraction efficiencies, including the type and volume of the extraction solvent and dispersive solvent, extraction time, effect of pH and salt addition, were investigated and optimized. Under the optimum conditions, the proposed method is sensitive and shows a good linearity within a range of 0.5–200 ng mL−1, with the correlation coefficients (r) varying from 0.9992 to 0.9998. High enrichment factors were achieved ranging from 190 to 450. The recoveries of the target analytes from water samples at spiking levels of 1.0, 5.0 and 50.0 ng mL−1 were between 84.8% and 110.2%. The limits of detection (LODs) for the analytes were ranged in 0.06–0.1 ng mL−1, and the relative standard deviations (RSD) varied from 3.9% to 5.7%. The proposed method has been successfully applied for the determination of the triazole fungicides in real water samples.  相似文献   

7.
We present a heuristic technique for solving a parameter estimation problem that arises in modeling the thermal behavior of electronic chip packages. Compact Thermal Models (CTMs) are network models of steady state thermal behavior, which show promise in augmenting the use of more detailed and computationally expensive models. The CTM parameter optimization problem that we examine is a nonconvex optimization problem in which we seek a set of CTM parameters that best predicts, under general conditions, the thermal response of a particular chip package geometry that has been tested under a small number of conditions. We begin by developing a nonlinear programming formulation for this parameter optimization problem, and then develop an algorithm that uses special characteristics of the optimization problem to quickly generate heuristic solutions. Our algorithm descends along a series of solutions to one-dimensional nonconvex optimization problems, obtaining a locally optimal set of model parameters at modest computational cost. Finally, we provide some experimental results and recommendations for extending this research. The authors are indebted to four anonymous referees for their help in improving the contribution and presentation of this paper.  相似文献   

8.
Tubular fullerene nanowhiskers called ‘fullerene nanotubes’ are composed of \(\hbox {C}_{60}\) fullerene molecules (\(\hbox {C}_{60}\) NTs) are synthesized at room temperature using the liquid–liquid interfacial precipitation method in the pyridine and isopropyl alcohol (IPA) system. The growth control of fullerene nanotubes is important for their chemical and physical properties as well as for their future applications. In the present study, we investigated the effect of light, water, solvent ratio and temperature on the synthesis of \(\hbox {C}_{60}\) nanotubes. A marked development in the yield of \(\hbox {C}_{60}\) NTs was achieved using dehydrated solvents, a solution with a volume ratio of 1:9 for pyridine: IPA, a growth temperature equal to \(5{^{\circ }}\hbox {C}\) and by illuminating the \(\hbox {C}_{60}\)-pyridine solution with ultraviolet light (wavelength 302 nm) for 102 h. The synthesized fullerene nanotubes were characterized by different analytical techniques including Raman and Fourier transform infrared spectroscopy, optical microscopy, focussed ion beam scanning electron microscopy and transmission electron microscopy.  相似文献   

9.
Formation of particle clusters in liquid–solid circulating fluidized beds significantly affects macroscopic hydrodynamic behavior of the system. A multi scale interfacial drag coefficient (MSD) is proposed to determine effects of particle clusters on the mesoscale structure, by taking momentum and energy balance of dense phase, dilute phase and interphase into account. Based on the transportation and suspension energy-minimization method, the multi scale interfacial drag coefficient model used in this work is combined with the Euler–Euler two fluid model to simulate the heterogeneous behaviors of liquid–solid circulating fluidized bed. It was found that the reduction in drag coefficient is at least an important factor for the simulation of clusters formation, and the core-annulus flow is observed in the riser. The liquid–solid flow regime was significantly affected by the down-flow of particles in the form of clusters near the walls of the riser. The calculated concentration of particles inside the riser compared reasonably well with the available experimental data obtained by Razzak et al.  相似文献   

10.
Vapor compression and Joule–Thomson (JT) cycles provide cooling power at the boiling temperatures of the refrigerants. Maintaining a fixed pressure in the evaporator allows for a stable cooling temperature at the boiling point of a pure refrigerant. In these coolers enhanced cooling power can be achieved by using mixed refrigerants. However, gas mixtures usually do not change their phase at a constant temperature, therefore, the cooling temperature has to be actively controlled. An exception to this rule holds for binary mixtures that can form a vapor–liquid–liquid equilibrium (VLLE).Phase equilibria in binary mixtures are usually modeled based on experimental results only. In the present study only the vapor pressures of the pure mixture components are required. The calculated results of nitrogen–ethane, nitrogen–ethylene, and nitrogen–propane mixtures are compared with experimental data presented in literature showing deviations of less than 1%.  相似文献   

11.

PTFE/GF(glass fiber) composites are widely applied in high-frequency printed circuit board (PCB) substrate materials due to the excellent dielectric properties of PTFE and the low thermal expansion coefficient of GF. However, the poor interface compatibility between PTFE and GF affects the performance of the composite substrates. In this study, tetraethyl orthosilicate (TEOS) was used as the silicon source, and polydimethylsiloxane (PDMS) was the organic precursor to modify the surface of GF through the sol–gel method to promote the interface compatibility of GF and PTFE. The modified GF noted T-GF was filled in PTFE to prepare PTFE/T-GF composites. SEM, FTIR, XPS, and contact angle confirmed that organic–inorganic hybrids were successfully loaded on GF's surface. Moreover, compared with PTFE/GF and the conventional coupling agent modified GF filled PTFE composites, the PTFE/T-GF exhibited improved dielectric constant (2.305), decreased dielectric loss (9.08E?4), higher bending strength (21.45 MPa) and bending modulus (522 MPa), better thermal conductivity (0.268 W/m*K) and lower CTE (70 ppm/°C), making it has promising application as the substrate materials for high frequency PCB.

  相似文献   

12.
Strain induced grain refinement of an Al–1 wt.% Mg alloy processed by equal channel angular pressing (ECAP) at cryogenic temperature is investigated quantitatively. The results show that both mean grain and subgrain sizes are reduced gradually with increasing ECAP pass. ECAP at cryogenic temperature increases the rate of grain refinement by promoting the fraction of high angle grain boundaries (HAGBs) and misorientation at each pass. The fraction of HAGBs and the misorientation of Al–1 wt.% Mg alloy during ECAP at cryogenic temperature increase continuously as a function of equivalent strain. Both {110} and {111} twins at ultrafine-grained size are observed firstly in Al–Mg alloy during ECAP. The analysis of grain boundaries and misorientation gradients demonstrates the grain refinement mechanism of continuous dynamic recrystallization.  相似文献   

13.
A finite volume meshless local Petrov–Galerkin (FVMLPG) method is presented for elastodynamic problems. It is derived from the local weak form of the equilibrium equations by using the finite volume (FV) and the meshless local Petrov–Galerkin (MLPG) concepts. By incorporating the moving least squares (MLS) approximations for trial functions, the local weak form is discretized, and is integrated over the local subdomain for the transient structural analysis. The present numerical technique imposes a correction to the accelerations, to enforce the kinematic boundary conditions in the MLS approximation, while using an explicit time-integration algorithm. Numerical examples for solving the transient response of the elastic structures are included. The results demonstrate the efficiency and accuracy of the present method for solving the elastodynamic problems.  相似文献   

14.
Abstract

The success of a gas pressure superplastic forming operation depends on accurate formulation of a pressure–time diagram which in turn needs an accurate stress–strain relationship evaluated preferably under multiaxial or biaxial conditions. The present analysis describes a technique of generating such curves from gas pressure cone forming tests and subsequent manipulation of the data. The method also includes an innovative technique of online monitoring of strain during the forming process by measuring the volume of displaced air from the die during progress of forming.  相似文献   

15.
The application of a multiscale method, called the multiscale aggregating discontinuities (MAD) method, to the failure analysis of composites is described. Two distinct features of the MAD method are the use of perforated unit cells, and the extraction of coarse-grained failure information. In the perforated unit cell, all subdomains of the unit cell that are not strictly elliptic are excluded, which enables the decomposition of its stable and unstable material. By means of these concepts, it is possible to compute an equivalent discontinuity at the macroscale, including both the direction and the magnitude of the discontinuity. This equivalent discontinuity is then passed to the macroscale along with the computed stress from the unit cell. The macroscale discontinuity is injected into the macro model by the extended finite element method (XFEM) procedure. In this paper, the method is improved by adding hourglass modes to the unit cell deformations, which better model growing cracks. Several examples comparing the MAD method with direct numerical simulations are presented.  相似文献   

16.
Abstract

Fullerene nanowhiskers (FNWs) are thin crystalline fibers composed of fullerene molecules, including C60, C70, endohedral, or functionalized fullerenes. FNWs display n-type semiconducting behavior and are used in a diverse range of applications, including field-effect transistors, solar cells, chemical sensors, and photocatalysts. Alkali metal-doped C60 (fullerene) nanowhiskers (C60NWs) exhibit superconducting behavior. Potassium-doped C60NWs have realized the highest superconducting volume fraction of the alkali metal-doped C60 crystals and display a high critical current density (Jc) under a high magnetic field of 50 kOe. The growth control of FNWs is important for their success in practical applications. This paper reviews recent FNWs research focusing on their mechanical, electrical and superconducting properties and growth mechanisms in the liquid–liquid interfacial precipitation method.  相似文献   

17.
In this paper, the effects of pressure-sensitive yielding on the factor and the J integral estimation for compact tension specimens are investigated. The analytical expressions for and J for pressure-insensitive von Mises materials are generalized to pressure-sensitive Drucker-Prager materials using a lower bound approach. The factor as a function of the pressure sensitivity and the normalized crack depth for compact tension specimens is derived under plane stress and plane strain conditions. The numerical results indicate that the factor decreases as the pressure sensitivity increases. The effects are more pronounced under plane strain conditions than under plane stress conditions. However, the effects of the pressure sensitivity on are found to be mild in general. For rigid perfectly-plastic materials, the J estimation for pressure-sensitive materials is also reduced to a simple expression of the tensile yield stress times the crack tip opening displacement as for the von Mises materials.  相似文献   

18.
Results are presented on the heat capacity cp of octene-1 in the temperature range 282–368 K. The present experimental data are compared with results in the literature.Academic Scientific Complex A. V. Luikov Heat and Mass Transfer Institute, Academy of Sciences of Belarus, Minsk. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 66, No. 4, pp. 490–491, April, 1994.  相似文献   

19.
Liquid–liquid interfacial crystallization was proposed as a novel method of controlling crystal shape and size of precipitated solute particles. The crystallization was performed at interface forming two separate phases of aqueous solution and organic solvent in the present study, and progressed by increase of supersaturation caused by the slightly mutual diffusion at the liquid–liquid system. This crystallization process is possible to precipitate particles at room and constant temperature without cooling or heating sources. The liquid–liquid interfacial crystallization method was able to carry out in changing the shape of the interface.A spherical shape was made by droplets in the present liquid atomization process. Crystallization started when the droplets of the solution sprayed into the organic liquid. Our research involved producing glycine porous particles by atomizing glycine solution into 1-butanol and other organic solvent with 3-fluid nozzle. The collision between the solutions in compressed air produced the micro-size droplets of glycine solution. In using 1-butanol liquid, the glycine crystallized at the glycine solution/1-butanol interface. The spherical aggregated particles were obtained in this spray granulation process. In addition, the transformation occurred from unstable β-structure to metastable α-structure with changing crystallization condition, and it was found that α- and β-structure of glycine coexist in the obtained particles from observation by X-ray powder diffraction.  相似文献   

20.
Fullerene nanowhiskers (FNWs) are thin crystalline fibers composed of fullerene molecules, including C60, C70, endohedral, or functionalized fullerenes. FNWs display n-type semiconducting behavior and are used in a diverse range of applications, including field-effect transistors, solar cells, chemical sensors, and photocatalysts. Alkali metal-doped C60 (fullerene) nanowhiskers (C60NWs) exhibit superconducting behavior. Potassium-doped C60NWs have realized the highest superconducting volume fraction of the alkali metal-doped C60 crystals and display a high critical current density (Jc) under a high magnetic field of 50 kOe. The growth control of FNWs is important for their success in practical applications. This paper reviews recent FNWs research focusing on their mechanical, electrical and superconducting properties and growth mechanisms in the liquid–liquid interfacial precipitation method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号