首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An experimental investigation is conducted into the effects of the particle volume fraction on the spray heat transfer performance of a nanofluid comprising de-ionized water and Al2O3 particles with a diameter of 35 nm. The tests are performed with a flat, horizontal heated surface using a nozzle with an orifice diameter of 0.7 mm and a nozzle-to-heated surface distance of 17 mm. The spray mass flux is varied in the range of 26.433–176.751 kg/m2 s, while the particle volume fraction is specified as 0%, 0.001%, 0.025%, or 0.05%. It is found that the optimal heat transfer performance is obtained using a particle volume fraction of 0.001%. The surface compositions of the sprayed samples are observed using scanning electron microscopy. The results show that the surfaces sprayed with a nanofluid containing 0.025 Vol% or 0.05 Vol% of nanoparticles contain a small amount of Al. However, those cooled using a nanofluid with a particle volume fraction of 0% or 0.001% show no traces of Al.  相似文献   

2.
An experimental study was carried out in order to find out the effects of Al2O3 nanofluid with a mean diameter of 20 nm on heat transfer, pressure drop and thermal performance of a double tubes heat exchanger. The effective viscosity of nanofluid was measured in various temperatures ranging from 27 °C to 55 °C. Experiments were carried out at different Reynolds numbers ranging from 5000 to 20,000, approximately, and in various nanoparticles concentration up to 1% by volume. Results indicate that there is a good potential in promoting the thermal performance of heat exchanger by adding nanoparticles in the investigated ranges where there is not a severe pressure drop penalty. The empirical correlation was created for Nusselt number variation based on the Reynolds number and nanoparticles concentration.  相似文献   

3.
Solar thermal collectors have significant importance due to its wide use in solar thermal technology. Augmentation of heat transfer is a key challenge for solar thermal technology. A quarter circular solar thermal collectors is investigated throughout the paper introducing carbon nanotube (CNT)–water nanofluid in the cavity. Tilt angle of this type of collector plays a vital role and heat transfer can be maximized for a particular tilt angle and solid volume fraction of the nanofluid. Galerkin weighted residual of FEM has been applied for the numerical solution of the problem. Grid independency test and code validation have been assessed for the accuracy of numerical solution. In this paper a wide range of solid volume fraction (δ = 0 to δ = 0.12) and tilt angle (ϕ = 0 to ϕ = 60°) has been investigated for Rayleigh number (Ra = 105–108) with varying dimensionless times. It has been found that both solid volume fraction and tilt angle play vital roles for the augmentation of heat transfer and a good heat transfer characteristic can be obtained by compromising between these two parameters. The results are shown using streamline, isotherm contour and related graph and chart.  相似文献   

4.
Nanofluids have been known as practical materials to ameliorate heat transfer within diverse industrial systems. The current work presents an empirical study on forced convection effects of Al2O3–water nanofluid within an annulus tube. A laminar flow regime has been considered to perform the experiment in high Reynolds number range using several concentrations of nanofluid. Also, the boundary conditions include a constant uniform heat flux applied on the outer shell and an adiabatic condition to the inner tube. Nanofluid particle is visualized with transmission electron microscopy to figure out the nanofluid particles. Additionally, the pressure drop is obtained by measuring the inlet and outlet pressure with respect to the ambient condition. The experimental results showed that adding nanoparticles to the base fluid will increase the heat transfer coefficient (HTC) and average Nusselt number. In addition, by increasing viscosity effects at maximum Reynolds number of 1140 and increasing nanofluid concentration from 1% to 4% (maximum performance at 4%), HTC increases by 18%.  相似文献   

5.
A numerical study is conducted to investigate the transport mechanism of free convection in a trapezoidal enclosure filled with water–Cu nanofluid. The horizontal walls of the enclosure are insulated while the inclined walls are kept at constant but different temperatures. The numerical approach is based on the finite element technique with Galerkin's weighted residual simulation. Solutions are obtained for a wide range of the aspect ratio (AR) and Prandtl number (Pr) with Rayleigh number (Ra = 105) and solid volume fraction (? = 0.05). The streamlines, isotherm plots and the variation of the average Nusselt number at the left hot wall are presented and discussed. It is found that both AR and Pr affect the fluid flow and heat transfer in the enclosure. A correlation is also developed graphically for the average Nusselt number as a function of the Prandtl number as well as the cavity aspect ratio.  相似文献   

6.
In this article, a parametric study is conducted to evaluate heat transfer enhancement in a ribbed channel containing Al2O3–Water nanofluid with wavy wall. The physical domain is under the influence of the magnetic field that creates a negative force against the working fluid to move. Nanofluid with higher temperature enters the cool ribbed duct and heat is exchanged along the walls of channel. The effects of the dominant parameters including number of the blocks, solid volume fractions of nanofluid, Hartmann number, Reynolds number, and different states of amplitude sine waves are numerically tested on the local and average Nusselt number, skin friction, and total entropy generation. Excellent agreement between present study and previous literature is observed. It is found that, an augmentation in magnetic field will result in higher values of both local and average Nusselt number accompanying with bigger values of skin friction and entropy generation. Computations illustrate that, increasing the solid volume fraction of the Al2O3 nanoparticles will raise the Nusselt number and total entropy generation rate but its effect on the skin friction is negligible. Also, numerical results imply that increasing amplitude sine waves of the geometry has incremental effect on the Nusselt number and skin friction but its effect on the total entropy generation rate is not so clear. Moreover, by adding number of the used blocks in the presence of magnetic field, the local Nusselt number experiences more jumps but it does not increase the average Nusselt number, necessarily. In addition, using more blocks increases skin friction but it has a reverse effect on the total entropy generation rate.  相似文献   

7.
ABSTRACT

The heat transfer characteristics of liquid droplets are influenced by the hydrophobicity of the surfaces. Fluid properties and surface energy play important roles in heat transfer assessment. In the present study, the influence of the contact angle on the flow field developed inside a nanofluid droplet consisting of a mixture of water and carbon nanotubes (CNT) is investigated. Flow field and heat transfer characteristics are simulated numerically in line with the experimental conditions. It is found that the flow velocity predicted numerically is in good agreement with the experimental data. Nusselt and Bond numbers increase at large contact angles and Marangoni force dominates over buoyancy force.  相似文献   

8.
The metal–hydrogen reactor is usually composed of a porous medium (hydride bed) and an expansion volume (gaseous phase). During the sorption process, the hydrogen flow and the heat transfer in the expansion part are badly known and can have some effects on the sorption phenomena in the hydride medium. At our knowledge, the hypothesis that neglects those effects is typically used. In this paper, a 2D study of heat and mass transfer has been carried out to investigate the transient transport processes of hydrogen in the two domains of a closed cylindrical reactor. A theoretical model is conducted and solved numerically by the control-volume-based finite element method (CVFEM). The result on temperature and hydride density distribution are presented and discussed. Moreover, this paper discusses in detail the effects of some governing operating conditions, such as dimensions of the expansion volume, height to the radius reactor ratio, and the initial hydrogen to metal atomic ratio, on the evolution of the pressure, fluid flow, temperature and the hydrogen mass desorbed.  相似文献   

9.
Convective heat transfer and friction factor characteristics of water/propylene glycol (70:30% by volume) based CuO nanofluids flowing in a plain tube are investigated experimentally under constant heat flux boundary condition. Glycols are normally used as an anti-freezing heat transfer fluids in cold climatic regions. Nanofluids are prepared by dispersing 50 nm diameter of CuO nanoparticles in the base fluid. Experiments are conducted using CuO nanofluids with 0.025%, 0.1% and 0.5% volume concentration in the Reynolds numbers ranging from 1000 < Re < 10000 and considerable heat transfer enhancement in CuO nanofluids is observed. The effect of twisted tape inserts with twist ratios in the range of 0 < H/D < 15 on nanofluids is studied and further heat transfer augmentation is noticed. The increment in the pressure drop in the CuO nanofluids over the base fluid is negligible but the experimental results have shown a significant increment in the convective heat transfer coefficient of CuO nanofluids. The convective heat transfer coefficient increased up to 27.95% in the 0.5% CuO nanofluid in plain tube and with a twisted tape insert of H/D = 5 it is further increased to 76.06% over the base fluid at a particular Reynolds number. The friction factor enhancement of 10.08% is noticed and increased to 26.57% with the same twisted tape, when compared with the base fluid friction factor at the same Reynolds number. Based on the experimental data obtained, generalized regression equations are developed to predict Nusselt number and friction factor.  相似文献   

10.
This paper examines forced convection heat transfer and entropy generation of a nanofluid laminar flow through a horizontal channel with wavy walls in the presence of magnetic field, numerically. The Newtonian nanofluid is composed of water as base fluid and Al2O3 as nanoparticle which is exposed to a transverse magnetic field with uniform strength. The inlet nanofluid with higher temperature enters the cool duct and heat is exchanged along the walls of a wavy channel. The effects of the dominant parameters including Reynolds number, solid volume fraction, Hartmann number, and different states of amplitude sine waves are studied on the local and average Nusselt number, skin friction, and total entropy generation. Computations show excellent agreement of the present study with the previous literature. The computations indicate that with the increasing strength of a magnetic field, Nusselt number, skin friction, and total entropy generation are increased. It is found that increasing the solid volume fraction of nanoparticles will increase the Nusselt number and total entropy generation, but its effect on the skin friction is negligible. Also, results imply that increasing amplitude sine waves of the geometry has incremental effect on both Nusselt number and skin friction, but its effect on the total entropy generation is not so tangible.  相似文献   

11.
This paper presents a numerical analysis of natural cooling of a right triangular heat source by a water–CuO nanofluid in a right triangular cavity that is under the influence of a horizontal magnetic field. A computational domain is defined and a numerical scheme based on the control volume formulation using the SIMPLE algorithm is developed. The convection–diffusion terms are discretised using a power-law scheme. The effects of the Rayleigh number, the solid volume fraction, the Hartmann number and the heat source position in the cavity on the heat transfer performance of the cavity are examined. The thermal performance of the cavity is enhanced as the Rayleigh number increases, the Hartmann number decreases and the distance of the heat source with the cold walls decreases. An optimum solid volume fraction is found that maximises the heat transfer at high Rayleigh numbers.  相似文献   

12.
A continuum two-phase fluid–particle model accounting for fluid-phase heat generation or absorption and thermal radiation is developed and applied to the problem of heat transfer in a particulate suspension flow over a horizontal heated surface in the presence of a gravity field. Analytical solutions for the temperature distributions and the wall heat fluxes for both phases are obtained. Two cases of wall thermal conditions corresponding to stationary and periodic temperature distributions are considered. Numerical evaluations of the analytical solutions are performed and the results are reported graphically to elucidate special features of the solutions. The effects of heat absorption and thermal radiation are illustrated through representative results for the temperature distributions and heat fluxes of both phases for various fluid–particle suspensions. It is found that heat absorption increases the total heat transfer rate for various particulate volume fraction levels while thermal radiation decreases it.  相似文献   

13.
To analyse heat and mass transfer in a metal–hydrogen reactor, the hypothesis that disregards the radiative heat transfer in the reactor, is typically used. In this paper, we take into account the radiative heat transfer and we test the validity of this hypothesis in the case of the LaNi5 and in the case of the magnesium. A theoretical model is conducted for the two-dimensional system where conduction, convection radiation and chemical reaction take place simultaneously. This model is solved by the finite volume method. The numerical simulation is used to present the time–space evolutions of the temperature and the hydride density in the reactor and to determinate the sensitivity to some parameters (absorption coefficient, scattering coefficient, reactor wall emissivity).  相似文献   

14.
In this study, the cooling performance of Al2O3–H2O nanofluid was experimentally investigated as a much better developed alternative for the conventional coolant. For this purpose the nanofluid was passed through the custom-made copper minichannel heat sink which is normally attached with the electronic heat source. The thermal performance of the Al2O3–H2O nanofluid was evaluated at different volume fraction of the nanoparticle as well as at different volume flow rate of the nanofluid. The volume fraction of the nanoparticle varied from 0.05 vol.% to 0.2 vol.% whereas the volume flow rate was increased from 0.50 L/min to 1.25 L/min. The experimental results showed that the nanofluid successfully has minimized the heat sink temperature compared to the conventional coolant. It was noticed also that the thermal entropy generation rate was reduced via using nanofluid instead of the normal water. Among the other functions of the nanofluid are to increase the frictional entropy generation rate and to drop the pressure which are insignificant compared to the normal coolant. Given the improved performance of the nanofluid, especially for high heat transportation capacity and low thermal entropy generation rate, it could be used as a better alternative coolant for the electronic cooling system instead of conventional pure water.  相似文献   

15.
In this paper, the laminar forced convection heat transfer of the water-based nanofluid inside a minichannel heat sink is studied numerically. An Eulerian two-fluid model is considered to simulate the nanofluid flow inside the triangular heat sink and the governing continuity, momentum, and energy equations for both phases are solved using the finite volume method. Comparisons of the Nusselt number predicted by the Eulerian–Eulerian model with the experimental data available in the literature demonstrate that the simulation results are in excellent agreement with the experimental data and the maximum deviation from experimental data is 5%. The results show that the heat sink with nanofluid has a better heat transfer rate in comparison with the water-cooled heat sink. Also, the heat transfer enhancement increases with an increase in Reynolds number and nanoparticle volume concentration. In addition, the friction factor increases slightly for nanofluid-cooled minichannel heat sink.  相似文献   

16.
2 and 5 wt.% nickel was supported on different MgO to Al2O3 (M/A) ratios (0.5, 1 and 1.5) and evaluated in reverse water gas shift (RWGS) reaction. The catalysts were prepared by impregnation method and the nanocrystalline supports were synthesized by simple surfactant (CTAB) assisted precipitation technique. The following catalytic activity was observed for 2% & 5% Ni supported on different M/A ratios; M/A = 1 > M/A = 1.5 > M/A = 0.5. The perceived order was related to difference in the structural properties of supports and catalysts. The BET results revealed decrease of specific surface area with increase in M/A ratio, mesoporous structure for M/A = 0.5 and 1 and meso-macroporous structure for M/A = 1.5. The effect of nickel loading on the support with M/A = 1 was also investigated. 1.5% Ni showed high CO2 conversion of 39.2% at 700 °C and CO selectivity higher than 90% at all temperatures. Increase of nickel loading higher than 1.5% was in favor of CH4 formation. The TEM images of 1.5% Ni on M/A = 1 revealed uniform distribution of Ni particles with average size of 4.9 nm. The H2-TPR analysis displayed shifting of maximum temperature of the main peak (γ) to higher temperatures with increase of M/A ratio in the support, indicating harder reducibility of catalysts with higher MgO content. The 1.5% Ni supported on M/A = 1 (MgAl2O4) showed great catalytic stability and CO selectivity (>98%) after 15 h on stream.  相似文献   

17.
This paper presents an experimental study on the convective boiling heat transfer and the critical heat flux (CHF) of ethanol–water mixtures in a diverging microchannel with artificial cavities. The results show that the boiling heat transfer and the CHF are significantly influenced by the molar fraction (xm) as well as the mass flux. For the single-phase convection region except for the region near the onset of nucleate boiling with temperature overshoot, the single-phase heat transfer coefficient is independent of the wall superheat and increases with a decrease in the molar fraction. After boiling incipience, the two-phase heat transfer coefficient is much higher than that of single-phase convection. The two-phase heat transfer coefficient shows a maximum in the region of bubbly-elongated slug flow and deceases with a further increase in the wall superheat until approaching a condition of CHF, indicating that the heat transfer is mainly dominated by convective boiling. A flow-pattern-based empirical correlation for the two-phase heat transfer coefficient of the flow boiling of ethanol–water mixtures is developed. The overall mean absolute error of the proposed correlation is 15.5%, and more than 82.5% of the experimental data were predicted within a ±25% error band. The CHF increases from xm = 0–0.1, and then decreases rapidly from xm = 0.1–1 at a given mass flux of 175 kg/m2 s. The maximum CHF is reached at xm = 0.1 due to the Marangoni effect, indicating that small additions of ethanol into water could significantly increase the CHF. On the other hand, the CHF increases with increasing the mass flux at a given molar fraction of 0.1. Moreover, the experimental CHF results are compared with existing CHF correlations of flow boiling of the mixtures in a microchannel.  相似文献   

18.
CO2 utilization through the activation of ethane, the second largest component of natural and shale gas, to produce syngas, has garnered significant attention in recent years. This work provides a comparative study of Ni catalysts supported on alumina, alumina modified with CaO and MgO, as well as alumina modified with La2O3 for the reaction of dry ethane reforming. The calcined, reduced and spent catalysts were characterized employing XRD, N2 physisorption, H2-TPR, CO2-TPD, TEM, XPS and TPO. The modification of the alumina support with alkaline earth oxides (MgO and CaO) and lanthanide oxides (La2O3), as promoters, is found to improve the dispersion of Ni, enhance the catalyst's basicity and metal-support interaction, as well as influence the nature of carbon deposition. The Ni catalyst supported on modified alumina with La2O3 exhibits a relatively stable syngas yield during 8 h of operation, while H2 and CO yields decrease substantially for Ni/Al2O3.  相似文献   

19.
In recent times, Au nanoparticles have been commonly used for delivering the drug especially in the case of hypothermia of tumors, but low absorption of IR light does not solve destruction of tumor cells. However, nanoparticles such as Fe3O4 coated with Au could be used to deliver the drug to a specific spot due to applied external magnetic field. Due to these applications, boundary layer approximation is invoked to simplify the mathematical model. This paper presents the nanoparticle shape analysis and heat transfer features of the Au–Fe3O4–blood hybrid nanofluid flowing past a stretching surface on a magnetohydrodynamic medium. Numerical solutions of nonlinear differential equations are obtained by RKF-45 method with the help of shooting technique. The behavior of emerging parameters is described graphically for velocity and temperature profiles. It is found that the blade-shaped Au and Fe3O4 nanoparticles have better thermal conductance than brick, sphere, cylinder, needle, and platelet shapes. It is also observed that the Lorentz force generated due to magnetic field helps in controlling the flow and enhance the thermal conductivity of hybrid nanofluid.  相似文献   

20.
This paper presents a study on the NH3–H2O distillation process using a packed column with liquid reflux from the condenser in an absorption refrigeration system. A differential mathematical model has been developed on the basis of mass and energy balances and the heat and mass transfer equations. A net molar flux between the liquid and vapour phases has been considered in the mass transfer equation, which obviates the need to assume equimolar counter-diffusion. The model equations have been solved using the finite-difference method. Results obtained for a specific application are shown, including parameter distributions along the column length. The influence of rectifying and stripping lengths, mass and heat transfer coefficients and volumetric heat rejection from the column, on the distillate ammonia concentration has been analysed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号