共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of temperature on the hydration of Portland cement pastes blended with 50 wt.% of siliceous fly ash is investigated within a temperature range of 7 to 80 °C.The elevation of temperature accelerates both the hydration of OPC and fly ash. Due to the enhanced pozzolanic reaction of the fly ash, the change of the composition of the C–S–H and the pore solution towards lower Ca and higher Al and Si concentrations is shifted towards earlier hydration times. Above 50 °C, the reaction of fly ash also contributes to the formation of siliceous hydrogarnet. At 80 °C, ettringite and AFm are destabilised and the released sulphate is partially incorporated into the C–S–H. The observed changes of the phase assemblage in dependence of the temperature are confirmed by thermodynamic modelling.The increasingly heterogeneous microstructure at elevated temperatures shows an increased density of the C–S–H and a higher coarse porosity. 相似文献
2.
Hydration of fly ash cement 总被引:1,自引:0,他引:1
It is necessary to establish the material design system for the utilization of large amounts of fly ash as blended cement instead of disposing of it as a waste. Cement blended with fly ash is also required as a countermeasure to reduce the amount of CO2 generation. In this study, the influences of the glass content and the basicity of glass phase on the hydration of fly ash cement were clarified and hydration over a long curing time was characterized. Two kinds of fly ash with different glass content, one with 38.2% and another with 76.6%, were used. The hydration ratio of fly ash was increased by increasing the glass content in fly ash in the specimens cured for 270 days. When the glass content of fly ash is low, the basicity of glass phase tends to decrease. Reactivity of fly ash is controlled by the basicity of the glass phase in fly ash during a period from 28 to 270 days. However, at an age of 360 days, the reaction ratios of fly ash show almost identical values with different glass contents. Fly ash also affected the hydration of cement clinker minerals in fly ash cement. While the hydration of alite was accelerated, that of belite was retarded at a late stage. 相似文献
3.
4.
5.
Thomas D Dyer 《Cement and Concrete Research》2004,34(5):849-856
One treatment option for municipal solid waste incinerator fly ash (IFA) is vitrification. The process yields a material containing reduced levels of trace metals relative to the original ash. The material is glassy and potentially suitable as a cement component in concrete. This paper examines the vitrification of an IFA and studies the hydration reactions of combinations of this vitrified material and Portland cement (PC). Isothermal conduction calorimetry, powder X-ray diffraction (XRD), thermogravimetry (TG) and scanning electron microscopy were employed to study the hydration reactions. As the levels of vitrified ash increase, the quantities of AFt phase produced decrease, whilst quantities of AFm phase increase, due to the reduced levels of sulfate in the vitrified ash. The levels of calcium silicate hydrate (CSH) gel (inferred from estimates of quantities of gel-bound water) remain constant at 28 days regardless of vitrified ash content, indicating that the material is contributing toward the formation of this product. 相似文献
6.
Hydration mechanisms of ternary Portland cements containing limestone powder and fly ash 总被引:1,自引:0,他引:1
K. De Weerdt M. Ben Haha G. Le Saout K.O. Kjellsen H. Justnes B. Lothenbach 《Cement and Concrete Research》2011,(3):279-291
The effect of minor additions of limestone powder on the properties of fly ash blended cements was investigated in this study using isothermal calorimetry, thermogravimetry (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM) techniques, and pore solution analysis. The presence of limestone powder led to the formation of hemi- and monocarbonate and to a stabilisation of ettringite compared to the limestone-free cements, where a part of the ettringite converted to monosulphate. Thus, the presence of 5% of limestone led to an increase of the volume of the hydrates, as visible in the increase in chemical shrinkage, and an increase in compressive strength. This effect was amplified for the fly ash/limestone blended cements due to the additional alumina provided by the fly ash reaction. 相似文献
7.
8.
Fly ash is commonly used as a substitute for cement within concrete in various applications. Manufacturers of reinforced concrete products commonly limit the quantity of fly ash used to 25% or less by weight. Test cylinders with varying percentages of Class C (25-65%) and Class F (25-75%) fly ash and a water-reducing admixture (WRA) were created under field manufacturing conditions and tested for 7-day compressive strength. Seven-day compressive strength for the concrete/fly ash/WRA was found to be highest when the concrete mix included approximately 35% Class C or 25% Class F fly ash. However, substitution ratios of up to 65% Class C or 40% Class F fly ash for cement met or exceeded American Society for Testing and Materials (ASTM) strength requirements for manufacture of Class I, II and III reinforced concrete pipe (RCP). 相似文献
9.
为降低海工硅酸盐水泥的生产成本,本文研究了不同粒度粉煤灰对海工硅酸盐水泥性能的影响。研究表明:原状粉煤灰掺量越高,海工硅酸盐水泥的需水量越低、工作性能越好,同时导致3d和28d强度减小、28d氯离子扩散系数增加。随磨细粉煤灰粒度的减小和掺量的降低,海工硅酸盐水泥的需水量先增大后减小,3d和28d强度下降幅度减小,28d氯离子扩散系数增大幅度减小。当粉煤灰粒度(D50)小于4.3μm、掺量在10%内时,不仅可以降低需水量,提高工作性能,同时对强度、氯离子渗透性能基本没有影响。 相似文献
10.
《Journal of Industrial and Engineering Chemistry》2014,20(1):315-321
Paper presents effect of size fraction and glass structure of fly ashes on cement hydration. Fly ashes below 16 μm and 16–32 μm, both from the 1st and 3rd section of electro-filter, were applied. Hydration heat, content of Ca(OH)2 and unreacted C3S were studied and compressive strength and microstructure were analysed. Results show that finer ashes have higher depolymerization degree of SiO4 units in glass what increases pozzolanic reactivity. Incorporation of fly ashes below 16 μm from the 3rd section gives cement class 52.5 N. At 180 day, Ca(OH)2 content decreases by 67% and C3S hydration degree increases by 50% relative to control sample. 相似文献
11.
12.
13.
An investigation on the use of tincal ore waste, fly ash, and coal bottom ash as Portland cement replacement materials 总被引:1,自引:0,他引:1
The possibility of using tincal ore waste (TW), coal bottom ash (BA), and fly ash (FA) as partial replacement in concrete was examined through a number of tests. The properties examined include setting time, compressive strength, mortar expansion, water consistency of mortar, and microstructure. The results showed that compressive strength of all specimens containing 1 wt.% of TW was higher than that of the control at the 28th day of curing. At 90 days, the contribution to strength by BA+TW and FA+TW was higher than in the concrete-prepared equivalent TW beyond 3 wt.% of Portland cement (PC) replacement. With the replacement of 3-5 wt.% of PC by TW, the compressive strength of the concrete decreased compared to control concrete. However, the values obtained are within the limit of Turkish Standards (TS). Adding BA or FA with TW improved the performance relative to TW replacement only. Increasing replacement of TW gives rise to a higher setting time. As a result, TW, BA, and FA samples may be used as cementitious materials. 相似文献
14.
Pastes of white Portland cement (wPc) and wPc-pulverized fuel ash (pfa) blends were studied up to 13 years. The reaction of wPc with water was initially retarded in the presence of pfa particles but accelerated at intermediate ages. Reaction with KOH solution was rapid with or without pfa. A universal compositional relationship exists for the C-A-S-H in blends of Pc with aluminosilicate-rich SCMs. The average length of aluminosilicate anions increased with age and increasing Al/Ca and Si/Ca; greater lengthening in the blends was due to additional Al3 + at bridging sites. The morphology of outer product C-A-S-H was always foil-like with KOH solution, regardless of chemical composition, but with water it had fibrillar morphology at high Ca/(Si + Al) ratios and foil-like morphology started to appear at Ca/(Si + Al) ≈ 1.2–1.3, which from the literature appears to coincide with changes in the pore solution. Foil-like morphology cannot be associated with entirely T-based structure. 相似文献
15.
The effect of mineral additions based on calcium aluminates on the hydration mechanism of ordinary Portland cement (OPC) was investigated using isothermal calorimetry, thermal analysis, X-ray diffraction, scanning electron microscopy, solid state nuclear magnetic resonance and pore solution analysis. Results show that the addition of a calcium sulfoaluminate cement (CSA) to the OPC does not affect the hydration mechanism of alite but controls the aluminate dissolution. In the second blend investigated, a rapid setting cement, the amorphous calcium aluminate reacts very fast to ettringite. The release of aluminum ions strongly retards the hydration of alite but the C–S–H has a similar composition as in OPC with no additional Al to Si substitution. As in CSA–OPC, the aluminate hydration is controlled by the availability of sulfates. The coupling of thermodynamic modeling with the kinetic equations predicts the amount of hydrates and pore solution compositions as a function of time and validates the model in these systems. 相似文献
16.
Mechanical behaviour of various mortars made by combined fly ash and limestone in Moroccan Portland cement 总被引:1,自引:0,他引:1
Physico-chemical properties and mechanical behaviour of ternary cements made by Portland cement, fly ash and limestone are studied. The mixtures at various compositions of clinker, gypsum fly ash and limestone are intimately ground and compared to other compositions without fly ash. Blended fly ash cements are also studied. The results show that fly ash acts as grinding agent by reducing the required time to obtain the same percentage of particles retained on a 80-μm sieve as the standard cement. Fly ash cements lead to an important extension of setting time than limestone cements. The replacement of clinker by limestone gives better mechanical strengths than the mixtures containing fly ash at early days; after 28 days, the cements prepared by incorporation of fly ash gain an important strength. From mechanical point of view, an optima dosage was obtained at 77% clinker, 2% gypsum, 7.5% fly ash and 13% limestone composition. 相似文献
17.
复合碱激发剂协同处理高钙粉煤灰研制土聚水泥 总被引:1,自引:0,他引:1
采用复合碱激发剂协同处理高钙粉煤灰研制土聚水泥,试验确定了复合碱激发剂的模数和掺量、养护温度和养护时间,并研究了高钙粉煤灰基土聚水泥的抗压强度、反应产物和微观形貌。试验结果表明:复合碱激发剂适宜的模数为1.5,掺量为Na2O当量10%;适宜养护条件为75℃养护8h,然后在23℃室温养护至所需龄期,其28d抗压强度达63.4MPa;碱激发高钙粉煤灰过程中体系内同时生成土聚水泥凝胶和水化硅酸钙凝胶,并有类沸石矿物生成,反应产物与未反应的粉煤灰颗粒胶结成较为密实的高钙粉煤灰基土聚水泥硬化浆体。 相似文献
18.
Results of calorimeter tests on Portland cement-silica fume-fly ash mixtures are presented. Data indicate that silica fume accelerates cement hydration at high water/cementitious ratios and retards hydration at low water/cementitious ratios. On the other hand, fly ash retards cement hydration more significantly at high water/cementitious ratios. When silica fume and fly ash are added together with cement, the reactivity of the silica fume is hampered and the hydration of the cementitious system is significantly retarded. 相似文献
19.
我公司两条5000/d生产线由中材国际南京水泥工业设计研究院负责主体工程没计.由于煤炭价格持续上涨,我公司义远离煤炭产地,故所用煤炭质量一直较差,入窑煤灰分长期处于31%~34%左右,且全部燃用无烟煤.在原料巾MgO又较高的情况下,我公司熟料强度还能保持在65MPa以上.在此介绍一下我们的生产经验. 相似文献
20.
烧制硫铝酸盐水泥的原料要求ω(Al2O3)达到50%,目前主要采用铝钒土。而粉煤灰中ω(Al2O3)也达20%~40%。实验采用粉煤灰为原料,按照一定的配比配制生料并烧制硫铝酸盐水泥熟料;利用XRD分析其熟料矿物组成并制成净浆试体测其强度。结果表明,(1)利用Al2O3含量较低的粉煤灰原料,通过适宜的配料设计,能够煅烧出以C4A3S^-和C2S为主要矿物的贝里特-硫铝酸盐水泥,且较适宜的烧结温度为1250℃。(2)硫铝酸盐水泥中,其矿物组成C4AS^-的质量分数不宜过少,否则不能保证其水泥的早期强度,一般不应少于30%。 相似文献