首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Numerical simulations have been carried out to investigate the turbulent heat transfer enhancement in the pipe filled with porous media. Two-dimensional axisymmetric numerical simulations using the k? turbulent model is used to calculate the fluid flow and heat transfer characteristics in a pipe filled with porous media. The parameters studied include the Reynolds number (Re = 5000–15,000), the Darcy number (Da = 10?1–10?6), and the porous radius ratio (e = 0.0–1.0). The numerical results show that the flow field can be adjusted and the thickness of boundary layer can be decreased by the inserted porous medium so that the heat transfer can be enhanced in the pipe. The local distributions of the Nusselt number along the flow direction increase with the increase of the Reynolds number and thickness of the porous layer, but increase with the decreasing Darcy number. For a porous radius ratio less than about 0.6, the effect of the Darcy number on the pressure drop is not that significant. The optimum porous radius ratio is around 0.8 for the range of the parameters investigated, which can be used to enhance heat transfer in heat exchangers.  相似文献   

2.
Detailed numerical simulations are performed for oxygen transfer around and within a circular scaffold for animal cell culture. The oxygen concentration distribution, minimum oxygen concentration within the scaffold and its corresponding location, as well as the Sherwood number are presented at different Darcy numbers, Reynolds numbers and Damkohler numbers. It is found that if the Reynolds number is increased from 1 to 30, the Sherwood number increases 1 time for a Darcy number of 5 × 10?6 while 34 times for a Darcy number of 5 × 10?4. The location of the minimum oxygen concentration is close to the centre of the scaffold when the Darcy number is smaller than about 5 × 10?5 or the Reynolds number is smaller than about 1, especially for the Damkohler number larger than O(10). The present study may provide useful guidance on design of the bioreactor with scaffold as well as choosing optimal operating parameters.  相似文献   

3.
Bénard convection around a circular heated cylinder embedded in a packed bed of spheres is studied numerically. The Forchheimer–Brinkman–extended Darcy momentum model with the Local Thermal Non-Equilibrium energy model is used in the mathematical formulation for the porous layer. The governing parameters considered are the Rayleigh number (103  Ra  5 × 107) and the thermal conductivity ratio (0.1  kr  10,000). The structural properties of the packed bed are kept constant as: cylinder-to-particle diameter ratio D/d = 20 and porosity ε = 0.5, while the Prandtl number is fixed at Pr = 0.71. It is found that the presence of the porous medium suppresses significantly the strong free convection produced in the empty enclosure, and reduces considerably the high intensity of the pair of vortices generated behind the cylinder. Also, the results show that the porous medium can play the role of insulator or enhancer of heat transfer from the heat source, depending mainly on their thermal conductivities regardless of the Rayleigh number.  相似文献   

4.
Mathematical simulation of unsteady natural convection modes in a square cavity filled with a porous medium having finite thickness heat-conducting walls with local heat source in conditions of heterogeneous heat exchange with an environment at one of the external boundaries has been carried out. Numerical analysis was based on Darcy–Forchheimer model in dimensionless variables such as a stream function, a vorticity vector and a temperature. The special attention was given to analysis of Rayleigh number effect Ra = 104, 105, 106, of Darcy number effect Da = 10?5, 10?4, 10?3, ∞, of the transient factor effect 0 < τ < 1000 and of the heat conductivity ratio k2,1 = 3.7 × 10?2, 5.7 × 10?4, 6.8 × 10?5 on the velocity and temperature fields. The influence scales of the defining parameters on the average Nusselt number have been detected.  相似文献   

5.
The present study is to investigate the numerical simulation of steady laminar forced convection in a partially porous channel, with four dissimilar porous-blocks, attached to the strip heat sources at the bottom wall. The analysis is based on the Navier–Stokes equation in the fluid field, the Darcy–Brinkman–Forchheimer flow model in the porous field, and the energy equations for two thermal fields. The effects of variations of different parameters such as porous blocks Darcy numbers, arrangements of dissimilar blocks, Forchheimer coefficient, Reynolds number, thermal conductivity and Prandtl number are investigated and the velocity and temperature fields are presented and discussed. In the dissimilar partially porous channel, it is found that when the blocks sorted from the lowest to the highest Da in the flow direction, the total heat transfer enhancement is almost the same as in the similar porous channel (Nu/Nusim = 92%), while the total pressure drop is considerably lower (P/Psim = 28%). In addition, reverse arrangement of porous blocks is suggested to prepare more uniform temperature gradient in all heat sources.  相似文献   

6.
Natural convection heat transfer in a rotating, differentially heated enclosure is studied numerically in this paper taking into consideration the Forchheimer–Brinkman-extended Darcy model. The enclosure is filled with a fluid-saturated porous medium and executes a steady counterclockwise angular velocity about its longitudinal axis. The staggered grid arrangement together with the Marker and Cell (MAC) method was employed to solve the governing equations. The governing parameters considered are the porosity, 0.4  ϵ  0.99, the Darcy number, 0.005  Da  0.01 and the Taylor number, 8.9 × 104  Ta  3.8 × 105, and the centrifugal force is assumed weaker than the Coriolis force. It is found that higher porosities have weaker flow circulation when the Coriolis effect is smaller than the buoyancy effect. The global quantity of the heat transfer rate increases by increasing the porosity and the Darcy number and decreases by increasing the Taylor number.  相似文献   

7.
A penalty finite element method based simulation is performed to analyze the influence of various walls thermal boundary conditions on mixed convection lid driven flows in a square cavity filled with porous medium. The relevant parameters in the present study are Darcy number (Da = 10?5 ? 10?3), Grashof number (Gr = 103 ? 105), Prandtl number (Pr = 0.7–7.2), and Reynolds number (Re = 1–102). Heatline approach of visualizing heat flow is implemented to gain a complete understanding of complex heat flow patterns. Patterns of heatlines and streamlines are qualitatively similar near the core for convection dominant flow for Da = 10?3. Symmetric distribution in heatlines, similar to streamlines is observed irrespective of Da at higher Gr in natural convection dominant regime corresponding to smaller values of Re. A single circulation cell in heatlines, similar to streamlines is observed at Da = 10?3 for forced convection dominance and heatlines are found to emanate from a large portion on the bottom wall illustrating enhanced heat flow for Re = 100. Multiple circulation cells in heatlines are observed at higher Da and Gr for Pr = 0.7 and 7.2. The heat transfer rates along the walls are illustrated by the local Nusselt number distribution based on gradients of heatfunctions. Wavy distribution in heat transfer rates is observed with Da ? 10?4 for non-uniformly heated walls primarily in natural convection dominant regime. In general, exponential variation of average Nusselt numbers with Grashof number is found except the cases where the side walls are linearly heated. Overall, heatlines are found to be a powerful tool to analyze heat transport within the cavity and also a suitable guideline on explaining the Nusselt number variations.  相似文献   

8.
Fluid mechanics and heat transfer are studied in a double-tube heat exchanger that uses the combustion gases from natural gas in a porous medium located in a cylindrical tube to warm up air that flows through a cylindrical annular space. The mathematical model is constructed based on the equations of continuity, linear momentum, energy and chemical species. Unsteady fluid mechanics and heat transfer by forced gas convection in the porous media, with combustion in the inner tube, coupled to the forced convection of air in the annular cylindrical space are predicted by use of finite volumes method. Numerical simulations are made for four values of the annular air flow Reynolds number in the range 100 ? Re ? 2000, keeping constant the excess air ψ = 4.88, the porosity ε = 0.4, and the air–fuel mixture inlet speed Uo = 0.43 m/s. The results obtained allow the characterization of the velocity and temperature distributions in the inner tube and in the annular space, and at the same time to describe the displacement of the moving combustion zone and the annular porous media heat exchanger thermal efficiency. It is concluded that the temperature increase is directly related to the outer Reynolds number.  相似文献   

9.
The article presents an experimental study of turbulent heat transfer and flow friction characteristics in a circular tube equipped with two types of twisted tapes: (1) typical twisted tapes and (2) alternate clockwise and counterclockwise twisted tapes (C–CC twisted tapes). Nine different C–CC twisted tapes are tested in the current work; they included the tapes with three twist ratios, y/w = 3.0, 4.0 and 5.0, each with three twist angles, θ = 30o, 60o and 90o. The experiments have been performed over a Reynolds number range of 3000–27,000 under uniform heat flux conditions, using water as working fluid. The obtained results reveal that the C–CC twisted-tapes provide higher heat transfer rate, friction factor and heat transfer enhancement index than the typical twisted-tapes at similar operating conditions. The results also show that the heat transfer rate of the C–CC tapes increases with the decrease of twist ratio and the increase of twist angle values. Depending on Reynolds number, twist ratio and twist angle values, the mean Nusselt numbers in the tube fitted with the C–CC twisted tapes are higher than those with the typical ones and the plain tube around 12.8–41.9% and 27.3–90.5%, respectively. The maximum heat transfer enhancement indexes of the C–CC twisted tapes with θ = 90o for y/w = 3.0, 4.0 and 5.0, are 1.4, 1.34 and 1.3, respectively. In addition, correlations of the Nusselt number and the friction factor for using the C–CC twisted tapes are also determined. Both predicted Nusselt number and friction factor are within ±15% and ±15% deviation compared to the experimental data.  相似文献   

10.
Natural convection flows in a square cavity filled with a porous matrix has been studied numerically using penalty finite element method for uniformly and non-uniformly heated bottom wall, and adiabatic top wall maintaining constant temperature of cold vertical walls. Darcy–Forchheimer model is used to simulate the momentum transfer in the porous medium. The numerical procedure is adopted in the present study yields consistent performance over a wide range of parameters (Rayleigh number Ra, 103  Ra  106, Darcy number Da, 10−5  Da  10−3, and Prandtl number Pr, 0.71  Pr  10) with respect to continuous and discontinuous thermal boundary conditions. Numerical results are presented in terms of stream functions, temperature profiles and Nusselt numbers. Non-uniform heating of the bottom wall produces greater heat transfer rate at the center of the bottom wall than uniform heating case for all Rayleigh numbers but average Nusselt number shows overall lower heat transfer rate for non-uniform heating case. It has been found that the heat transfer is primarily due to conduction for Da  10−5 irrespective of Ra and Pr. The conductive heat transfer regime as a function of Ra has also been reported for Da  10−4. Critical Rayleigh numbers for conduction dominant heat transfer cases have been obtained and for convection dominated regimes the power law correlations between average Nusselt number and Rayleigh numbers are presented.  相似文献   

11.
Natural convection heat transfer in a porous media filled and non-isothermally heated from the bottom wall of triangular enclosure is analyzed using finite difference technique. Darcy law was used to write equations of porous media. Dimensionless heatfunction was used to visualize the heat transport due to buoyancy forces. Three different boundary conditions were applied for the vertical and inclined boundaries of triangular enclosures as Case I; both vertical and inclined walls were isothermal, Case II; vertical wall was adiabatic and inclined one was isothermal, Case III; vertical wall is isothermal and inclined one is adiabatic. A cosine function was utilized to get non-isothermal wall condition. The study was performed for different aspect ratios (0.25 ? AR ? 1.0) and Darcy-modified Rayleigh numbers (100 ? Ra ? 1000). It was observed that heat transfer enhancement was formed when vertical and inclined walls were isothermal while bottom wall was at non-uniform temperature. Heat transfer from bottom wall did not vary when the value of aspect ratio was higher than 0.50. In addition, heatline visualization technique was a useful technique for non-isothermally heated and porous media filled triangular enclosures.  相似文献   

12.
Conjugate heat transfer from a uniformly heated spinning solid disk of finite thickness and radius during a semi-confined liquid jet impingement from a rotating nozzle is studied. The model covers the entire fluid region including the impinging jet on a flat circular disk and flow spreading out downstream under the spinning confinement plate and free surface flow after exposure to the ambient gaseous medium. The model examines how the heat transfer is affected by adding a secondary rotational flow under semi-confined jet impingement. The solution is made under steady state and laminar conditions. The study considered various plate materials such as aluminum, copper, silver, constantan and silicon. Ammonia, water, flouroinert FC-77 and MIL-7808 oil were used as working fluids. The range of parameters covered included Reynolds number (220–900), Ekman number (7.08 × 10?5–∞), nozzle-to-target spacing (β = 0.25–1.0), disk thicknesses to nozzle diameter ratio (b/dn = 0.25–1.67), Prandtl number (1.29–124.44) and solid to fluid thermal conductivity ratio (36.91–2222). It was found that a higher Reynolds number increased local heat transfer coefficient reducing the interface temperature difference over the entire disk surface. The rotational rate also increased local heat transfer coefficient under most conditions. An engineering correlation relating the Nusselt number with other dimensionless parameters was developed for the prediction of the system performance.  相似文献   

13.
Momentum and heat transfer characteristics of a semi-circular cylinder immersed in unconfined flowing Newtonian fluids have been investigated numerically. The governing equations, namely, continuity, Navier–Stokes and energy, have been solved in the steady flow regime over wide ranges of the Reynolds number (0.01 ? Re ? 39.5) and Prandtl number (Pr ? 100). Prior to the investigation of drag and heat transfer phenomena, the critical values of the Reynolds number for wake formation (0.55 < Rec < 0.6) and for the onset of vortex shedding (39.5 < Rec < 40) have been identified. The corresponding values of the lift coefficient, drag coefficient, and Strouhal number are also presented. After establishing the limit of the steady flow regime, the influence of the Reynolds number (0.01 ? Re ? 39.5) and Prandtl number (Pr = 0.72, 1, 10, 50 and 100) on the global flow and heat transfer characteristics have been elucidated. Detailed kinematics of the flow is investigated in terms of the streamline and vorticity profiles and the variation of pressure coefficient in the vicinity of the cylinder. The functional dependence of the individual and total drag coefficients on the Reynolds number is explored. The Nusselt number shows an additional dependence on the Prandtl number. In addition, the isotherm profiles, local Nusselt number (NuL) and average Nusselt number (Nu) are also presented to analyze the heat transfer characteristic of a semi-circular cylinder in Newtonian media.  相似文献   

14.
The steady, two-dimensional and incompressible flow of power-law fluids across an unconfined isothermal heated circular cylinder is investigated numerically to ascertain the effect of temperature-dependent viscosity on the flow and forced convection heat transfer phenomena. Extensive numerical results elucidating the variation of the heat transfer characteristics and drag coefficient on the severity of temperature dependence of viscosity (0 ? b ? 0.5), power law index (0.6 ? n ? 1.6), Prandtl number (1 ? Pr ? 100) and Reynolds number (1 ? Re ? 30) are presented. The coupled momentum and energy equations are expressed in the stream function/vorticity formulation and solved using a second-order accurate finite difference method to determine the local and surface-averaged Nusselt numbers, the drag coefficient, and to map the flow domain in terms of the temperature and flow fields near the cylinder. The variation of viscosity with temperature is shown to have a substantial effect on both the local and surface-averaged values of the Nusselt number. As expected, the results also suggest that the rate of heat transfer shows positive dependence on the Reynolds number and Prandtl number. Furthermore, stronger the dependence of viscosity on the temperature, the greater is the enhancement in the rate of heat transfer. Finally, all else being equal, shear-thinning fluid behaviour facilitates heat transfer while the shear-thickening behaviour has deleterious effect on heat transfer.  相似文献   

15.
The present numerical study deals with mixed convection flows within square enclosures filled with porous media. The influence of various thermal boundary conditions on bottom and side walls based on thermal aspect ratio (A) is investigated for a wide range of parameters (1 ? Re ? 100, 0.015 ? Pr ? 7.2, 10?5 ? Da ? 10?3 and 103 ? Gr ? 105). A penalty finite element method with bi-quadratic elements has been used to investigate the results in terms of streamlines, isotherms and heatlines and average Nusselt numbers. Lid driven effect is dominant at low Darcy number (Da = 10?5), whereas buoyancy driven effect is dominant at high Darcy numbers (Da = 10?4 and Da = 10?3) for Re = 1. Asymmetric pattern is observed in isotherms and heatlines for Re = 100. It is found that thermal gradient is high at the center of the bottom wall for A = 0.1 due to large dense heatlines at that zone and that is low for A = 0.9 irrespective of Re, Pr and Gr. Overall heat transfer rates are higher for A = 0.1 compared to other thermal aspect ratios (A = 0.5, A = 0.9) irrespective of Darcy number, Prandtl number and Reynolds number.  相似文献   

16.
The current study centers around a numerical investigation of natural convection heat transfer within a two-dimensional, horizontal annulus that is partially filled with a fluid-saturated porous medium. In addition, the porous sleeve is considered to be press fitted to the inner surface of the outer cylinder. Both cylinders are maintained at constant and uniform temperatures with the inner cylinder being subjected to a relatively higher temperature than the outer one. Moreover, the Forchheimer and Brinkman effects are taken into consideration when simulating the fluid motion inside the porous sleeve. Furthermore, the local thermal equilibrium condition is assumed to be applicable for the current investigation. The working fluid is air while copper is used to represent the solid phase. The porosity is considered to be uniform and constant with ε = 0.9. The main objective of this study is to examine the effect of the porous sleeve on the buoyancy induced flow motion under steady-state condition. Such an effect is studied using the following dimensionless parameters: Pr = 0.05–50, Ra = 102–106 and Da = 10?4–10?6. Also, the study highlights the effect of the dimensionless porous sleeve thickness (b) and thermal conductivity ratio (ks/kf) in the range between 1.1–1.9 and 1–150, respectively.  相似文献   

17.
This study is to experimentally investigate the heat transfer enhancement by perforation in air cooling of two in-line rectangular heat sources module. Two separation distances between the heat sources were investigated at s/L = 0.5 and 1.0. The area between the heat sources in both cases were perforated in aligned arrangement such that the holes open area ratio (β) are of 0, 0.0736, 0.1472 and 0.2944. The dimensionless temperature distribution and the average Nusselt number are considered at different values of Reynolds number (3391 ? ReL ? 10798) and holes open area ratio. It could be seen that perforation could enhance the heat transfer coefficients and reduce the module temperature significantly. Correlations are obtained for the average Nusselt number utilizing the present measurements within the investigated range of the different parameters.  相似文献   

18.
This paper experimentally investigates the sintered porous heat sink for the cooling of the high-powered compact microprocessors for server applications. Heat sink cold plate consisted of rectangular channel with sintered porous copper insert of 40% porosity and 1.44 × 10?11 m2 permeability. Forced convection heat transfer and pressure drop through the porous structure were studied at Re ? 408 with water as the coolant medium. In the study, heat fluxes of up to 2.9 MW/m2 were successfully removed at the source with the coolant pressure drop of 34 kPa across the porous sample while maintaining the heater junction temperature below the permissible limit of 100 ± 5 °C for chipsets. The minimum value of 0.48 °C/W for cold plate thermal resistance (Rcp) was achieved at maximum flow rate of 4.2 cm3/s in the experiment. For the designed heat sink, different components of the cold plate thermal resistance (Rcp) from the thermal footprint of source to the coolant were identified and it was found that contact resistance at the interface of source and cold plate makes up 44% of Rcp and proved to be the main component. Convection resistance from heated channel wall with porous insert to coolant accounts for 37% of the Rcp. With forced convection of water at Re = 408 through porous copper media, maximum values of 20 kW/m2 K for heat transfer coefficient and 126 for Nusselt number were recorded. The measured effective thermal conductivity of the water saturated porous copper was as high as 32 W/m K that supported the superior heat augmentation characteristics of the copper–water based sintered porous heat sink. The present investigation helps to classify the sintered porous heat sink as a potential thermal management device for high-end microprocessors.  相似文献   

19.
20.
This work illustrates the compact heat sink simulations in forced convection flow with side-bypass effect. Conventionally, the numerical study of the fluid flow and heat transfer in finned heat sinks employs the detailed model that spends a lot of computational time. Therefore, some investigators begin to numerically study such problem by using the compact model (i.e. the porous approach) since the regularly arranged fin array can be set as a porous medium. The computations of the porous approach model will be faster than those of the detailed mode due to the assumption of the volume-averaging technique. This work uses the Brinkman–Forchheimer model for fluid flow and two-equation model for heat transfer. A configuration of in-line square pin-fin heat sink situated in a rectangular channel with fixed height (H = 23.7 mm), various width and two equal-spacing bypass passages beside the heat sink is successfully studied. The pin-fin arrays with various porosities (ε = 0.358–0.750) and numbers of pin-fins (n = 25–81), confined within a square spreader whose side length (L) is 67 mm, are employed. The numerical results suggest that, within the range of present studied parameters (0.358 ? ε ? 0.750, 25 ? n ? 81 and 1 ? W/L ? 5), the pin-fin heat sink with ε = 0.750 and n = 25 is the optimal cooling configuration based on the maximum ratio of Nusselt number to dimensionless pumping power (Nu/(ΔP × Re3)). Besides, based on medium Nu/(ΔP × Re3) value and suitable channel size, W/L = 2–3 is suggested as the better size ratio of channel to heat sink.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号