首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以3,3′,4,4′-二苯醚四羧酸二酐(ODPA)、4,4′-二氨基二苯醚(ODA)为单体,N-甲基-2-砒咯烷酮(NMP)为溶剂,粉末二氧化硅(SiO_2)为添加剂,通过原位聚合法得到二氧化硅/聚酰胺酸杂化液,制备二氧化硅/聚酰亚胺杂化薄膜。用红外光谱仪、X-射线衍射仪、扫描电镜、偏光显微镜和拉力试验机等对杂化薄膜的聚集态结构及性能进行表征测试。结果表明,SiO_2极细的粒径对PI起到了增强、增韧作用,随着SiO_2添加量从0%增加到8%,杂化薄膜的有序度、拉伸强度、弹性模量、断裂伸长率呈现先升高后下降的趋势。当二氧化硅添加量为6%时,杂化薄膜的综合性能最佳,此时有序度、拉伸强度、弹性模量、断裂伸长率分别较纯PI膜提高了6%、15%、28%、28%。  相似文献   

2.
以2,3',4,4'-联苯四酸二酐、4,4'-二氨基二苯甲烷和4-苯乙炔基苯酐为原料合成聚酰亚胺(PI)树脂,采用红外光谱对其结构进行了表征。采用SiO_2为耐磨改性剂,对聚酰亚胺进行改性,制备PI/SiO_2复合材料,研究其摩擦磨损性能,结果表明当SiO_2含量为10%时,PI/SiO_2复合材料具有较好的摩擦磨损性能,摩擦系数为0.145,磨损量为3.8mg。  相似文献   

3.
采用2,2′-双[4-(4-氨基苯氧基)苯基]丙烷(BAPP)、4,4′-二氨基二苯醚(ODA)和3,3′,4,4′-二苯酮四酸二酐(BTDA)合成BAPP/ODA/BTDA型聚酰亚胺(PI)的前驱体聚酰胺酸(PAA)溶液,将该溶液涂覆于3,3′,4,4′-联苯四甲酸二酐(BPDA)/ODA型PI基膜上,通过去溶剂和热亚胺化制备PI复合膜,将复合膜的热塑面与铜箔复合,热压制得二层挠性覆铜板(2L-FCCL)。研究了BAPP/ODA/BTDA型PI、BPDA/ODA型PI、PI复合膜及2L-FCCL的性能。结果表明:BAPP/ODA/BTDA型PI薄膜的玻璃化转变温度为238℃,耐热性能优异,PI复合膜在280℃,15MPa下与铜箔层压50~60min制得的2F-FCCL剥离强度大于0.8N/mm,且经360℃焊锡浴测试未分层、未起泡,耐热性能和剥离强度均满足工业要求。  相似文献   

4.
以BAPP为原料的热塑性PI薄膜的合成及性能   总被引:1,自引:1,他引:1  
沈亚  胡和丰  吕珏  张珩 《中国胶粘剂》2006,15(10):28-31
以芳香长链二胺2,2-双[4-(4-氨基苯氧基)苯基]丙烷(BAPP)为二胺原料,与最具商业价值的四种酸酐均苯四甲酸二酐(PMDA)、3,3′,4,4′-联苯四酸二酐(BPDA)、3,3′,4,4′-二苯酮四酸二酐(BTDA)、3,3′,4.4′-二苯醚四酸二酐(ODPA)为二酸酐原料,采用二步溶液缩聚法制得了一系列均聚和共聚聚酰亚胺薄膜。利用FTIR表征了聚酰亚胺的结构,并用DSC、TOA、TMA DMA等手段测得了不同聚酰亚胺的Tg、5%与10%热失重温度、线膨胀系数、拉伸强度、断裂延伸率、热压粘接T型剥离强度等性能数据。  相似文献   

5.
化学亚胺化法合成三元共聚聚酰亚胺   总被引:1,自引:0,他引:1  
以N,N-二甲基甲酰胺为溶剂,用3,3′,4,4′-二苯酮四酸二酐(BTDA)、2,2-双[4-(4-氨基苯氧基)苯基]丙烷(BAPP)和4,4′-二氨基二苯砜(DDS)合成3种聚酰亚胺(PI)。先用BAPP和/或DDS与BTDA反应生成一系列聚酰胺酸(PAA),然后将得到的PAA化学亚胺化制备相应的PI。用傅里叶变换红外光谱(FTIR)仪、核磁共振仪和黏度计等表征了聚合物的结构和性能。FTIR谱图中1780,1720,725 cm~(-1)附近出现了PI的特征吸收峰。制备的PI有很好的热稳定性,N_2气氛中低于500℃没有明显的降解。  相似文献   

6.
以均苯四甲酸二酐(PMDA)为二酐单体,对苯二胺(p-PDA)、2-(4-氨基苯基)-5-氨基苯并噁唑(BOA)和2-(4-氨基苯基)-5-氨基苯并咪唑(BIA)为二胺单体,制备了聚酰亚胺(PI)树脂和薄膜,又采用三辊机制备了PI/SiO_2杂化树脂和薄膜。利用傅里叶红外光谱对材料的结构进行了表征,结果表明薄膜完全亚胺化,且SiO_2存在于PI基体中。此外,还研究了PI和PI/SiO_2杂化薄膜的热学性能和力学性能。随着2种不同粒径SiO_2的加入,PI/SiO_2杂化薄膜的耐热性能得到明显改善。与纯PI相比,PI/SiO_2杂化薄膜的玻璃化转变温度上升3~16℃,1%热失重温度提高了14~30℃,而且线性热膨胀得到抑制,PI-R106-5的线性热膨胀系数(CTE)仅为2.59×10~(-6)/℃。但是,PI/SiO_2杂化薄膜的力学性能相对于纯PI薄膜有所降低,未来应继续提高其相容性。  相似文献   

7.
李全涛  彭慧  易昌凤  徐祖顺 《粘接》2007,28(6):4-6,39
在N,N′-二甲基甲酰胺(DMF)溶剂中,选用3,3,′4,4′-二苯酮四羧酸二酐(BTDA)、均苯四甲酸酐(PMDA)和4,4′-二氨基二苯醚(ODA)为单体,微波辐射低温溶液缩聚合成一种共缩聚聚酰亚胺的前驱体聚酰胺酸(PAA),然后亚胺化脱水环化生成共缩聚聚酰亚胺(PI)。通过特性黏数([η])、红外光谱(FT-IR)和热重分析(TGA)对聚合物进行了结构表征和性能测试。结果表明,微波辐射溶液聚合能够提高PAA的特性黏数及产率,微波的引入大大缩短了反应时间;IR表明,在1778 cm-1和1723 cm-1处观察到聚酰亚胺特征峰;TG表明,PI在氮气中535℃左右开始降解,10%热失重温度(Td10%)为587℃。  相似文献   

8.
采用3,3′,4,4′-二苯甲酮四酸二酐(BTDA)为A2型单体,2,4,6-三氨基嘧啶(TAP)为B′B2型单体,通过控制BTDA和TAP的比例制备了一系列含有嘧啶核的超支化聚酰亚胺(HBPI)。采用傅立叶变换红外光谱、核磁共振、热失重分析和溶解性测试对合成的HBPI进行了结构表征和性能研究。结果表明,合成的新型含嘧啶核的HBPI在强极性非质子溶剂中具有良好的溶解性;新型HBPI的耐热性能比普通聚酰亚胺有所降低,但仍具有较为优异的耐热性能。  相似文献   

9.
以一种磺化二胺单体2,2′-二磺酸基-4,4′-二苯醚二胺(S-ODA)与非磺化单体4,4′-二苯醚二胺(ODA),及二酐单体3,3′,4,4′-二苯甲酮四羧酸二酐(BTDA)为原料,采用高温一步法直接聚合,得到了一系列磺化聚酰亚胺(SPI)质子交换膜材料,并用红外光谱对聚合物进行了表征.通过改变聚合体系中磺化单体与非磺化单体的比例控制聚合物的磺化度,并研究了材料的组成对膜的电导率、吸水率等性能的影响。  相似文献   

10.
以柔性二胺单体1,3-双(4-氨基苯氧基)苯(134BAPB)和含支链二胺单体3,3′-二乙基-4,4′-二氨基二苯甲烷(DEMMD)与3,3′,4,4′-二苯酮四酸二酐(BTDA)进行三元共聚,制备了一系列聚酰亚胺(PI)薄膜。通过傅里叶红外光谱、差示扫描量热仪、热重分析仪、热机械分析仪及电子万能材料试验机对材料的结构、热性能和力学性能进行了表征。结果表明PI薄膜已经成功制备,热性能与力学性能良好。  相似文献   

11.
姚正平 《化工进展》2015,34(11):3990
采用3,3',4,4'-二苯酮四羧酸二酐(BTDA)、4,4'-二氨基二苯基甲烷(MDA)和4,4'-二氨基联苯(Bz)按一定比例共聚合成了一类新的共聚型聚酰亚胺(PI-BTDA/MDA/Bz),通过调整MDA和Bz的比例制备了4种具有不同化学结构的聚酰亚胺均质膜,测试了这些聚酰亚胺均质膜对水的接触角和在N,N-二甲基甲酰胺中的溶胀性。实验结果表明:BTDA、MDA、Bz的摩尔比为5:4:1时,所得的聚酰亚胺均质膜亲水性最好,且耐溶剂性能最优。以此比例的聚酰胺酸为铸膜液,0.2mm孔径的Al2O3陶瓷膜片为支撑体,制备了聚酰亚胺复合膜,并考察了进料温度和进料浓度对复合膜分离性能的影响。  相似文献   

12.
以含支链3,3′-二乙基-4,4′-二氨基二苯甲烷(M-OEA)为二胺单体,采用高温一步法与四种二酐进行聚合,合成了四种聚酰亚胺(PI)树脂,并制备了一系列聚酰亚胺薄膜。对聚酰亚胺树脂进行了溶解性测试,并通过傅里叶红外光谱、紫外-可见分光光度计、差示扫描量热仪、热重分析仪、静态热机械分析仪及电子万能材料试验机对PI薄膜的结构、光学性能、热性能和力学性能进行了表征。结果表明,该系列树脂溶解性优异,薄膜热稳定性良好,5%热失重温度(Td5)均在390℃以上,玻璃化转变温度(Tg)均高于230℃,两种半脂环族PI薄膜的光学性能优异,紫外截止波长280 nm。  相似文献   

13.
分别以4,4′-联苯醚二酐(ODPA)和4,4′-(4,4′-异丙基二苯氧基)二酞酸酐(BPADA)为酸酐单体、2,2-双[4-(4-氨基苯氧基苯)]六氟丙烷(HFBAPP)为胺类单体,采用两步法制备了两种聚酰亚胺(PI)薄膜(PI-1和PI-2).采用傅里叶变换红外光谱仪对薄膜的结构进行了表征,采用差示扫描量热仪和热...  相似文献   

14.
本研究合成了一种新型的具有不对称结构的芳香二胺单体,即2,4,6-三甲基-3-胺基苯基-3′-胺基苯基甲酮(TMPDA),并与3,3′-4,4′-二苯甲酮四羧酸二酐(BTDA)经低温聚合和化学亚胺化合成了一种可溶性光敏聚酰亚胺。采用FTIR、UV、DSC、TGA等测试手段对树脂的结构与性能进行了表征和研究。该种聚酰亚胺具有自增感特性,并经过紫外光(365nm)曝光后可以得到较清晰的阴图型图像。  相似文献   

15.
有机硅改性聚酰亚胺复合膜的抗原子氧性能   总被引:1,自引:0,他引:1  
由端氨丙基聚二甲基硅氧烷(PDMS)、均苯四甲酸二酐(PMDA)和4,4′-二氨基二苯醚(ODA)在N,N′-二甲基乙酰胺(DMAc)中共聚,热亚胺化法制备一系列有机硅改性聚酰亚胺复合材料。通过傅里叶变换红外吸收光谱仪(FTIR)、X射线光电子能谱(XPS)分析材料的化学结构,采用扫描电子显微镜(SEM)观察材料的表观形貌,利用地面原子氧(AO)模拟设备研究了该复合膜的抗原子氧性能。结果表明,有机硅改性聚酰亚胺复合膜在AO累积通量达到2.06×1020atom/cm2时,复合膜的AO剥蚀率可以达到6.69×10-25cm3/atom,约是纯聚酰亚胺薄膜抗原子氧性能的4.5倍。  相似文献   

16.
以均苯四甲酸酐(PMDA)、4,4'-二氨基二苯醚(ODA)为单体,N,N'-二甲基乙酰胺(DMAc)为溶剂,聚乙二醇-400和纳米二氧化钛(TiO_2)为添加剂,水为凝胶剂,通过浸没沉淀相转化和化学亚胺化制备聚酰亚胺/纳米二氧化钛(PI/TiO_2)杂化超滤膜。考察了添加剂用量对PI/TiO_2杂化超滤膜纯水通量、截留率、耐溶剂性能的影响。红外光谱(FT-IR)分析结果表明,所制备的膜为聚酰亚胺膜且纳米TiO_2粒子成功引入到膜中;扫描电镜(SEM)分析结果表明,添加剂用量调节了膜表层的致密性和支撑层的连通性。PEG-400、纳米TiO_2质量分数分别为10%、0. 2%时,PI/TiO_2膜的纯水通量达到120. 28 L/(m~2·h),卵清蛋白的截留率达到97. 31%。在11种有机溶剂中浸泡15 d后,PI/TiO_2杂化膜仍具有良好的耐溶剂性能。  相似文献   

17.
含三(4-氨基苯基)苯的超支化聚酰亚胺的合成及表征   总被引:1,自引:0,他引:1  
合成了三胺单体1,3,5-三(4-氨基苯基)苯(TAPB),将其与3,3′,4,4′-二苯酮四酸二酐(BTDA)缩合,采用化学亚胺化和热亚胺化两种方法合成了一种新型超支化聚酰亚胺(HBPIs).经红外光谱和核磁共振确认产物结构.对聚合物的性能进行分析,结果表明,聚合物的溶解性得到很好的改善.  相似文献   

18.
采用含氟单体4,4′-(六氟异丙基)-苯二酸酐(6FDA)、5,5′-(六氟异丙基)-二-(2-氨基苯酚)(6FHP)及二氨基二苯醚(ODA)合成了含氟聚酰亚胺共聚物材料,对材料的化学和光学性能进行了表征,共聚物材料在溶液状态下用旋涂法获得了较高质量的共聚物薄膜,并在此基础上采用先进的光波导工艺技术将该材料制备成条波导,测试结果表明该波导在光通信波段1550nm处的平均传输损耗小于0.66dB/cm,局部损耗在0.2dB/cm,进一步改进后有望获得性能优异的光电子器件.  相似文献   

19.
以含氟的二胺5,5’-(六氟异丙基)-二-(2-氨基苯酚)(6FHP)及二酐4,4’-(六氟异丙基)-苯二酸酐(6FDA)或均苯四甲酸酐(PMDA)为单体,以分散红1(DR1)为活性生色分子合成具有非线性光学特性的含氟聚酰亚胺,并采用溶胶-凝胶(Sol—Gel)法合成相应的聚酰亚胺/SiO2杂化材料。采用固态^29SiMASNMR谱研究了含氟聚酰亚胺/SiO2杂化材料的交联结构,结果表明杂化材料中是以T^3、Q^3、Q^4结构为主,说明在杂化材料中形成了交联网状结构.采用衰减全反射(ATR)测定了聚酰亚胺和杂化材料在832nm处的电光系数,其值分别为32、28、34和29pm/V,结果表明具有较高的电光系数。  相似文献   

20.
采用4,4′-氧双邻苯二甲酸酐(ODPA),对苯二胺(PDA)以及4,4′-二氨基二苯醚(ODA)为反应单体合成聚酰胺酸。涂覆法制备单面2层挠性覆铜板,继续高温压合得到高剥离强度的2层双面挠性覆铜板,并将聚酰胺酸热亚胺化得到聚酰亚胺薄膜。利用傅里叶红外光谱(FTIR)、差示扫描量热仪(DSC)等对覆铜板及聚酰亚胺薄膜的性能进行表征。结果表明:15MPa,230℃,20min下压合制备的2层双面挠性覆铜板,其剥离强度达到1.2kN/m,双面板之间的薄膜基本酰亚胺化,拉伸强度超过100 MPa。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号