首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The testing of assemblies for use in cryogenic systems commonly includes evaluation at or near operating (therefore cryogenic) temperature. Typical assemblies include valves and pumps for use in liquid oxygen-liquid hydrogen rocket engines. One frequently specified method of cryogenic external leakage testing requires the assembly, pressurized with gaseous helium (GHe), be immersed in a bath of liquid nitrogen (LN2) and allowed to thermally stabilize. Component interfaces are then visually inspected for leakage (bubbles). Unfortunately the liquid nitrogen will be boiling under normal, bench-top, test conditions. This boiling tends to mask even significant leakage.One little known and perhaps under-utilized property of helium is the seemingly counter-intuitive thermodynamic property that when ambient temperature helium is bubbled through boiling LN2 at a temperature of −195.8 °C, the temperature of the liquid nitrogen will reduce.This paper reports on the design and testing of a novel proof-of-concept helium injection control system confirming that it is possible to reduce the temperature of an LN2 bath below boiling point through the controlled injection of ambient temperature gaseous helium and then to efficiently maintain a reduced helium flow rate to maintain a stabilized liquid temperature, enabling clear visual observation of components immersed within the LN2. Helium saturation testing is performed and injection system sizing is discussed.  相似文献   

2.
With the increasing stress on consumable budgets, the goal of decreasing helium consumption of cryogenic system components has become a major issue. Although much progress has recently been made (improvements in helium Dewar technology and high Tc magnet leads are good examples) the potential to improve efficiency is greater when the entire cryogenic system is viewed as an interacting unit.  相似文献   

3.
Amorphous nanostructured MnO2 film was anodically deposited onto economical duplex stainless steel substrate. The obtained MnO2 film was characterized by X-ray diffraction, scanning electron microscopy, and energy dispersive X-ray spectroscopy for microstructural, morphological, and compositional studies. The capacitive behavior was systematically investigated by cyclic voltammetry, charge-discharge cycling and electrochemical impedance spectroscopy (EIS) in 1 M Na2SO4 electrolyte at different operating temperatures ranging from 20 to 60 °C. The specific capacitance (SC) was improved with an increase of operating temperature, and the highest SC of 398 F/g was achieved at a scan rate of 10 mV/s and operating temperature of 60 °C. The mechanism of SC improvement at elevated operating temperature was investigated using EIS. With an increase of operating temperature, the conductivity of electrolyte was improved, and the charge-transfer resistance (Rct) was decreased. The temperature dependence of 1/Rct follows an Arrhenius equation. The MnO2 film was electrochemically activated at 60 °C due to the formation of NayMnO2 after discharging.  相似文献   

4.
In order to obtain the design, manufacture and operation experiences on the Superconducting Radio Frequency (SRF) cryomodule for the International Linear Collider (ILC), a test cryomodule for 1.3 GHz single 9-cell SC cavity was designed by IHEP (Institute of High Energy Physics) and TIPC (Technical Institute of Physics and Chemistry) jointly. This cryomodule will be used as a horizontal test facility for a 1.3 GHz 9-cell SC cavity. The cryogenic system for the cryomodule was also designed, which will be operated at 2.0 K with saturated superfluid helium. The major requirements, design, simulation results of the cryomodule are reported in the paper. This key component of a superconducting accelerator test unit will be built in the near future at IHEP.  相似文献   

5.
The current flowing through a SMES is subjected to variations at a rate ranging from 0.1 A/s to 300 A/s under the influence of the power grid. The duration of power exchange varies from milliseconds to minutes, even to hours. When operating, the impact of AC losses in HTS tapes on the cryogenic cooling system should be considered. If the cryogenic cooling system fails to take away the generated heat effectively, this may lead to the temperature rise of the magnet and its possible damage. Therefore, it is essential to evaluate the technical and economical characteristic of cryogenic cooling system. Thus, a 5 MJ SMES model is built to calculate the temperature characteristic. A new factor δ is defined to assess the technological and economical validity of the chosen cryogenic scheme. The suitable capacity of the cryogenic cooling system is evaluated for different applications. The effect of the operating temperature on the technical and economical factor is also discussed.  相似文献   

6.
Sangkwon Jeong 《低温学》2010,50(4):287-291
As the YBa2Cu3O7-δ, or YBCO, superconductor is commercially developed and utilized for various HTS (high temperature superconductor) applications such as motor, generator, and fault current limiter, the cryocooling for 50 or 60 K range is more demanded than ever. In this case, non-superconducting current leads instead of HTS ones need to be used for energization from room temperature all the way to the cryogenic operating temperature. This technical note describes a simple method of reducing cooling load requirement for those HTS applications. Non-superconducting current leads are to be thermally anchored at an appropriate intermediate cryogenic temperature before they are connected to the application target temperature. The optimum thermal-anchoring temperature and its configuration have been obtained to minimize the required cryocooler’s cooling capacity for practical as well as ideal cases.  相似文献   

7.
Superconducting (SC) devices are attracting renewed attention as the demands for quantum‐information processing, meteorology, and sensing become advanced. The SC field‐effect transistor (FET) is one of the elements that can control the SC state, but its variety is still limited. Superconductors at the strong‐coupling limit tend to require a higher carrier density when the critical temperature (TC) becomes higher. Therefore, field‐effect control of superconductivity by a solid gate dielectric has been limited only to low temperatures. However, recent efforts have resulted in achieving n‐type and p‐type SC FETs based on organic superconductors whose TC exceed liquid He temperature (4.2 K). Here, a novel “ambipolar” SC FET operating at normally OFF mode with TC of around 6 K is reported. Although this is the second example of an SC FET with such an operation mode, the operation temperature exceeds that of the first example, or magic‐angle twisted‐bilayer graphene that operates at around 1 K. Because the superconductivity in this SC FET is of unconventional type, the performance of the present device will contribute not only to fabricating SC circuits, but also to elucidating phase transitions of strongly correlated electron systems.  相似文献   

8.
《低温学》2006,46(2-3):196-200
Future space missions will include detectors and other components cooled to cryogenic temperatures by adiabatic demagnetization refrigerators (ADRs) coupled with mechanical cryocoolers. In such systems the ADRs require lightweight, low-current superconducting magnets. At least one of an ADR’s magnets must operate at the cryocooler’s coldest stage temperature. This temperature should be as high as possible in order to improve operating efficiency and design flexibility. Until now all space-flight compatible magnets have been made with NbTi wire, which has limited their operating temperatures to below about 5 K. We have developed a lightweight (1 Kg) low-current (8 A) Nb3Sn magnet which produces a 3 T central field at 10 K. We explain the choice of this magnet’s specifications and describe its performance testing.  相似文献   

9.
The measurement of transverse resistivity of NbTi composite wires has shown already the existence of a resistive barrier between SC filaments and the copper matrix. The electric and thermal resistances of this barrier are respectively much higher than those of copper matrix and this barrier is expected to have an influence on the cryogenic stability of composite wires. The transverse and longitudinal resistivities are measured for NbTi composite wires which were heat-treated at different temperatures from 300°C to 600°C. These measurements show that the barrier grows with the heat-treatment temperature. From the experimental results, the effect of the barrier on cryogenic stability is estimated to be negligibly small for the composite wire which is heat-treated under the normal condition. As for Nb3Sn composite wires, two different structures of composite wires, each of which has a tantalum or niobium diffusion barrier, are studied and the same measurements as on NbTi composite wires are carried out. The results obtained indicate that the transverse resistivity depends appreciably on the structure of composite wires and that the larger transverse resistivity reduces not only the cryogenic stability, but also requires a larger transfer length at a current lead junction.  相似文献   

10.
11.
The hybrid superconducting fault current limiter (SFCL) is now at the stage of practical use in a power grid in Korea. A cryogenic cooling system was designed, fabricated, and successfully tested for a prototype of 22.9 kV/630 A SFCL. The operation scheme of cryogenic system has been investigated in preparation for temporary loss of cryocooler power in hybrid SFCL (in Kim et al., IEEE Trans. Appl. Supercond. 21(3):1284–1287, 2011). In this paper, we investigated the empirical modeling of cryogenic cooling system for SFCL using principal components and auto-associative support vector regression (PCSVR) for the prediction and fault detection of the cryogenic cooling system. For empirical model, data were acquired during a blackout test of cryogenic cooling system. Blackout times of the test were 1 hour and 4 hours at two operation current levels. Three set of data were used for training and optimization of the model and the rest set of data was used for verification. Signals for the model are temperatures measured at copper band and cold head of cryocooler, system pressure and liquid temperatures measured at two locations in liquid-nitrogen pool. For optimization of the SVR parameters, the response surface method (RSM) and particle swarm optimization (PSO) were adopted in this paper. After developing the empirical model we analyzed the accuracy of the model. Also, these results were compared with that of auto-associative neural networks (AANN). RSM and PSO gave almost the same optimum point. PCSVR showed much better performance than AANN in accuracy aspects. Moreover, this model can be used for the prognosis of cryogenic cooling system for SFCL.  相似文献   

12.
G. Sou  M. Redon  D. Prêle  M. Piat 《低温学》2009,49(11):681-685
This paper presents an ultra low noise instrumentation based on cryogenic electronic integrated circuits (ASICs: Application Specific Integrated Circuits). We have designed successively two ASICs in standard BiCMOS SiGe 0.35 μm technology that have proved to be operating at cryogenic temperatures. The main functions of these circuits are the readout and the multiplexing of TES/SQUID arrays. We report the cryogenic operation of a first ASIC version dedicated to the readout of a 2 × 4 pixel demonstrator array. We particularly emphasize on the development and the test phases of an ultra low white noise (0.2 nV/sqrtHz) cryogenic amplifier designed with two multiplexed inputs. The cryogenic SiGe amplifier coupled to a SQUID in a FLL operating at 4.2 K is also presented. We finally report on the development of a second version of this circuit to readout a 3 × 8 detectors array with improved noise performances and upgraded functionalities.  相似文献   

13.
The 80-nm-thickness BaTiO3 (BT) thin film was prepared on the Pt/Ti/SiO2/Si substrate by the RF magnetron sputtering technique. The Pt/BT/Pt/Ti/SiO2/Si structure was investigated using X-ray diffraction and scanning electron microscopy. The current-voltage characteristic measurements were performed. The bipolar resistive switching behavior was found in the Pt/BT/Pt cell. The current-voltage curves were well fitted in different voltage regions at the high resistance state (HRS) and the low resistance state (LRS), respectively. The conduction mechanisms are concluded to be Ohmic conduction and Schottky emission at the LRS, while space-charge-limited conduction and Poole-Frenkel emission at the HRS. The electroforming and switching processes were explained in terms of the valence change mechanism, in which oxygen vacancies play a key role in forming conducting paths.  相似文献   

14.
BaTiO3 (BTO) thin film was fabricated to investigate its non-volatile and reversible resistance switching phenomena by RF-sputtering method. The reversible resistance switching phenomenon was observed by DC voltage sweep and Pt/BTO/Pt metal-insulator-metal structure devices showed the bipolar resistance switching such as Pr0.7Ca0.3MnO3 and Cr-doped SrTiO3. The typical leakage current-voltage characteristic measurements were performed. High resistance state (HRS) and low resistance state (LRS) were maintained without power supply. The margin of the resistance between HRS and LRS is considerable during 120th cycles. The current emission mechanisms were suggested by double logarithm plot of leakage current vs. voltage. The comparison of the spreading current mapping images for two different resistance states showed that local conduction path was formed at LRS and was destroyed at HRS.  相似文献   

15.
L Zhang  W.S Lin  X.S Lu  A.Z Gu 《低温学》2004,44(9):643-648
The main purpose of this paper is to use an external recirculation pipe to inhibit geysering phenomenon in cryogenic propellant transfer system. Inhibiting geysering phenomena in the long vertical cryogenic feeding-line is very important to both the system designers and the operators because they may be latent catastrophic failure(s). Separated-flow model has been used in numerical simulation. Considered the numerical simulation results and the experimental conditions, an experimental set-up using liquid nitrogen (LN2) as working fluid has been built to simulate the recirculation in the long vertical cryogenic feeding-line.From the experimental results, it is clear that the natural circulation occurs in the recirculation system utilizing the external recirculation pipe and geysering phenomenon is inhibited. Adding external recirculation pipe to normal feeding-line system can be an effective method to reduce or eliminate geysering in cryogenic propellant transfer system.  相似文献   

16.
Liquid hydrogen (LH2) and liquid oxygen (LO2) cryogenic propellants can dramatically enhance NASA’s ability to explore the solar system due to their superior specific impulse (Isp) capability. Although these cryogenic propellants can be challenging to manage and store, they allow significant mass advantages over traditional hypergolic propulsion systems and are therefore enabling for many planetary science missions. New cryogenic storage techniques such as subcooling and the use of advanced insulation and low thermal conductivity support structures will allow for the long term storage and use of cryogenic propellants for solar system exploration and hence allow NASA to deliver more payloads to targets of interest, launch on smaller and less expensive launch vehicles, or both. These new cryogenic storage technologies were implemented in a design study for the Titan Orbiter Polar Surveyor (TOPS) mission, with LH2 and LO2 as propellants, and the resulting spacecraft design was able to achieve a 43% launch mass reduction over a TOPS mission, that utilized a traditional hypergolic propulsion system with mono-methyl hydrazine (MMH) and nitrogen tetroxide (NTO) propellants. This paper describes the cryogenic propellant storage design for the TOPS mission and demonstrates how these cryogenic propellants are stored passively for a decade-long Titan mission that requires the cryogenics propellants to be stored for 8.5 years.  相似文献   

17.
Pure-phase polycrystalline BiFeO3 films have been successfully prepared by pulsed-laser deposition on surface oxidized Si substrates using LaNiO3 buffer layer with substrate temperature (T s) ranging from 550?°C to 800?°C and a laser frequency of 5?Hz and 10?Hz. Bipolar resistive switching has been observed in all the films using LaNiO3 as bottom electrodes and silver glue dots as top electrodes, the resistivity switches from a high-resistance state (HRS) to a low-resistance state (LRS) with positive voltage applied on the top Ag electrodes, and from LRS to HRS with positive voltage applied on the bottom LaNiO3 electrodes. The mechanism of the resistive switching has been confirmed to be due to the voltage polarity dependent formation/rupture of the conducting filaments formed by the O vacancies. The highest resistive ratio of HRS to LRS, of more than 2 orders of magnitude, has been achieved in the highest resistive BiFeO3 film prepared at T s of 650?°C and laser frequency of 10?Hz.  相似文献   

18.
The next generation of Cosmic Microwave Background (CMB) instruments is dedicated to the detection of CMB B-modes. Instruments like QUBIC (QU Bolometric Interferometer for Cosmology) need components with state of the art properties at high frequency (>90?GHz) to minimise instrumental systematic effects. The Orthogonal Mode Transducer (OMT) is a critical front end component as it allows the discrimination of the polarisation mode of light. Superconducting planar technology seems very promising to improve its properties and miniaturisation. We present a planar superconducting OMT operating in the W band (75–110?GHz). Design and simulations have been performed using CST Studio Suite. Laboratory characterisations were obtained with two different cryogenic setups. We will present these two cryogenic setups, the calibration procedure and preliminary results for two OMT samples.  相似文献   

19.
由于回路热管是近20年内发展起来的新技术,因而除理论研究外在实验研究方面仍需要进一步深入研究.此外,为改善制冷机与被冷却器件的集成关系,需要发展能够工作在深低温区的低温回路热管.为此,搭建了低温回路热管的实验台,并设计了一种结构简单的低温回路热管,为下一步研究低温回路热管的启动特性和传热特性做准备.  相似文献   

20.
Pyeongyeol Park  Keeman Kim 《低温学》2008,48(7-8):347-353
Although there were many research activities for the development of superconducting Nb3Sn strands, the major one started under KSTAR (Korea Superconducting Tokamak Advanced Research) project in 1996. After the success of a large scale production test of Nb3Sn strand using the internal tin route, a new mass production facility is under operation since 2004.KAT (Kiswire Advanced Technology Ltd.), an affiliate of Kiswire Ltd., manufactured various types of Nb3Sn strands using the internal tin process optimized for fusion magnets. For the Nb3Sn strand of the KSTAR PF coil, each module has ~190 niobium filaments and 19 modules are restacked for the strand production. For the ITER TF strand, there are two types of basic design. One of them has 37and 19 modules with 169–219 niobium filaments in each module. The other has 19 modules with 164–190 niobium filaments in each module. Both the designs satisfy the requirements for ITER TF strand with enough margins. The characterization of the strands is performed by hysteresis loss measurement, RRR (Residual Resistivity Ratio), n-value, and critical current density measurement vs. temperature, magnetic field, and strain. The critical current density of the strands reached around 1100 A/mm2 at 12 T and 4.2 K. A well defined quality assurance program helped to produce a high quality strand with a piece length of more than 15 km. KAT has been provided Nb3Sn strand for KSTAR PF Coil and ready to produce the Nb3Sn strand for ITER TF coil.In this paper, the design concept, the fabrication procedure and the result of the strand performance test are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号