首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report on high tunablity of Ba0.6Sr0.4TiO3 (BST) thin films realized through the use of atomic layer deposited TiO2 films as a microwave buffer layer between BST and a high resistivity (HR) Si substrate. Coplanar waveguide (CPW) meander-line phase shifters using BST/TiO2/HR-Si and BST/MgO structures exhibited a differential phase shift of 95 and 24.4, respectively, at 15 GHz under an electric field of 10 kV/cm. The figure of merit of the phase shifters at 15 GHz was 30.6/dB for BST film grown on a TiO2/HR-Si substrate and 12.2/dB for BST film grown on a MgO single crystal substrate. These results constitute significant progress in integrating BST films with conventional silicon technology.  相似文献   

2.
Abstract

Historically, tunable dielectric devices using thin crystalline BaxSr1-x TiO3 (BST) films deposited on lattice-matched substrates, such as LaAlO3, have generally been grown using pulsed laser deposition (PLD). Highly oriented BST films can be grown by PLD but large projects are hampered by constraints of deposition area, deposition time and expense. The Metal-Organic Chemical Liquid Deposition (MOCLD) process allows for larger areas, faster turnover and lower cost. Several BST films deposited on LaAlO3 by MOCLD have been tested in 16 GHz coupled microstrip phase shifters. They can be compared with many PLD BST films tested in the same circuit design. The MOCLD phase shifter performance of 293° phase shift with 53 V/μm dc bias and a figure of merit of 47°/dB is comparable to the most highly oriented PLD BST films. The PLD BST films used here have measured XRD full-width-at-half-maxima (FWHM) as low as 0.047°. The best FWHM of these MOCLD BST films has been measured to be 0.058°.  相似文献   

3.
Ferroelectric Mn doped Ba0.5Sr0.5TiO3 (Mn-BST) films with/without BaTiO3 (BT) buffer layer have been grown on (001) MgO substrates by a pulsed laser deposition to investigate electrical tunability at microwave frequencies. Structural properties and surface morphologies of the films were investigated using an X-ray diffractometer and a scanning electron microscope, respectively. Microwave dielectric properties of Mn-BST thin films with BT buffer were studied for reduction of dielectric loss and improvement of electrical tunability. Distributed analog phase shifters have been designed and fabricated on Mn-BST films with/without BT buffer layer to understand microwave dielectric properties. The differential phase shift of the phase shifter fabricated on Mn-BST film was 22° at 10 GHz with 80 V of applied dc bias voltage. In comparison, phase shifter fabricated on Mn-BST/BT multilayers exhibit 41° of differential phase shift at the same condition. This suggests that a BT buffer layer is for microwave tunable device applications. The phase shifter fabricated on Mn-BST/BT multilayers exhibit a low insertion loss (S21) of ?1.1 dB, and a low return loss (S11) of ?14 dB with a bias voltage of 80 V.  相似文献   

4.
《Integrated ferroelectrics》2013,141(1):689-696
This work presents the design, fabrication and microwave performance of distributed analog phase shifter (DAPS) fabricated on (Ba,Sr)TiO3 (BST) thin films for X-band applications. Ferroelectric BST thin films were deposited on MgO substrates by pulsed laser deposition. The DAPS consists of high impedance coplanar waveguide (CPW) and periodically loaded tunable BST interdigitated capacitors (IDC). In order to reduce the insertion loss of DAPS and to remove the alteration of unloaded CPW properties according to an applied dc bias voltage, BST layer under transmission lines were removed by photolithography and RF-ion milling. The measured results are in good agreement with the simulated results at the frequencies of interest. The measured differential phase shift based on BST thin films was 24° and the insertion loss decreased from ?1.1 dB to ?0.7 dB with increasing the bias voltage from 0 to 40 V at 10 GHz.  相似文献   

5.
Abstract

We have analyzed MgTiO3 thin films grown on the Si substrate with/without SiO2 using pulsed laser deposition (PLD). We find that MgTiO3 thin films start to crystallize at 600°C, causing electrical instabilities in the MIS capacitors above this temperature. Detailed analysis by XRD technique reveals that structural differences of MgTiO3 thin films were not obvious below 600°C, whereas the electrical characteristics changes as a function of deposition temperature and the presence of thermally grown SiO2. We observe that the decrease of deposition temperature results in the increase of leakage current and anomalous positive charge (APC) density. These drawbacks were effectively suppressed by growing 100A SiO2 layer on the Si substrate prior to the deposition of MgTiO3 thin films.  相似文献   

6.
Abstract

A novel type of down-flow LSMCVD (Liquid Source Mist CVD) reactor was developed to prepare a high dielectric BST thin film on Pt electrode on Si wafer. Barium acetate [Ba (OOCCH3)2], strontium acetate [Sr (OOCCH3)2], and titanium isoproxide [Ti (OC3H7 i )4] were used as metal sources. Metal sources were dissolved in acetic acid, 1-butanol, or 2-methoxyethanol. BST [Ba/(Ba + Sr) = 0.7] film annealed on Pt/Ti/SiO2/Si above 650°C was polycrystalline. BST film has a (110) preferred orientation with increasing temperature. Surface roughness of BST film and grain size increased with increasing temperature. The metal-oxygen bond was formed at 650°C as shown in the spectra of FTIR. The depth profiles of elements of BST thin films indicated a uniform composition throughout the film. BST films annealed at 750°C showed a dielectric constant and a tanδ of 390 (thickness: 150 nm) and 0.06 at a frequency of 100 kHz, respectively. The behavior of capacitance of the BST film with bias voltage showed paraelectric property. BST film annealed at 750°C had the leakage current density of 3.2 (μA/cm2) at a bias voltage of 2V.  相似文献   

7.
Abstract

A considerable amount of work has been done in the area of frequency and phase agile microwave circuits employing thin ferroelectric films. The best films to date have been BaxSr1-xTiO3 (BST) grown by pulsed laser ablation. But laser ablation does not seem readily scalable for volume manufacturing, partly because the process appears limited to 5 cm diameter wafers or smaller. Another impediment to commercialization is testing. Testing is cumbersome because the devices must be inserted into a fixture to interface with coaxial launchers. And, high voltage bias tees are not commercially available to safeguard the microwave instrumentation. We have investigated alternate growth methods including MOCLD, CCVD, and sputtering and developed an on-wafer testing approach for screening phase shifters. Some of the results are reported in a companion paper. Here we report results for sputtered PLZT films on LaA1O3. Coupled microstrip phase shifters at K-band produced a figure of merit of ≈29°/dB. This is within a factor of two of the best laser ablated BST films. The devices also had an uncharacteristically flat frequency response between 12 and 20 GHz. Considering the large lattice mismatch between LaA1O3 and PLZT, the film crystallinity is very good as determined by XRD. Surprisingly, the films also appeared to be cubic. We also report results for CCVD Ba0.57Sr0.43TiO3 on sapphire. 20 GHz phase shifters yielded a figure-of-merit of 18°/dB. Finally we report the design and performance of a coplanar-to-microstrip transition that permits the phase shifters to be tested on wafer. Devices that pass have the virtual ground probe pads diced off so the phase shifter can be integrated into a phased array. Bias is fed directly through the coplanar probes and isolated from the network analyzer by custom high voltage bias tees.  相似文献   

8.
Abstract

Perovskite SrRuO3 (SRO) layer was, for the first time, been successfully synthesized by using metal-organic decomposition (MOD) process. The presence of SRO buffer layer on Pt(Si) substrates has significantly enhanced the crystallization and densification behavior of the subsequently deposited Pb(Zr0.52Ti0.48)O3 films. The pyrochlore free perovskite phase can be obtained by post-annealing the PZT/SRO/Pt(Si) films at 500°C, which is 50°C lower than that needed in PZT/Pt(Si) films. The fine grain (~0.3 μm) microstructure can be attained by post-annealing at 650°C for PZT/SRO/Pt(Si) films and 700°C for PZT/Pt(Si) films. The ferroelectric hysteresis properties of the two PZT films are comparable to each other. The leakage current properties of PZT/SRO/Pt(Si) films increased pronouncedly with post-annealing temperature, resulting in inferriar leakage behavior to PZT/Pt(Si) films.  相似文献   

9.
Abstract

Three important aspects of the preparation of SrTiO3 thin films by MOCVD are discussed in detail in view of the application of these films as the capacitor dielectric of Gbit-scale DRAMs: CVD reactions in the Sr(DPM)2-Ti(i-OC3H7)4-O2 system, step coverage and relations between microstructure and electrical properties. The effect of the substrate temperature on the Sr and Ti deposition rates was first investigated for thermal and ECR CVD SrTiO3 films. SrO and TiO2 deposition by thermal CVD above 550°C were found to be controlled by the surface reaction and gas transport, respectively, whereas both SrO and TiO2 deposition are controlled by gas transport for ECR CVD at 450 to 600°C. The influence of the Sr and Ti deposition regimes on the step coverage of SrO, TiO2 and SrTiO3 were then assessed. SrO films prepared by thermal CVD at 600°C exhibited the best step coverage, indicating that a relation exists between reaction controlled deposition and good step coverage. The effect of the film composition and film thickness on the microstructure of SrTiO3 thin films were finally investigated and correlations were made to other analyzed physical and electrical properties. Polycrystalline perovskite phase SrTiO3 films were obtained for a composition 0.7 ≤ Sr/Ti ≤ 1.2. The best crystallinity, maximum permittivity and maximum refractive index were obtained for Sr/Ti = 0.95. Titanium rich films are thought to be composed of a mixture of a titanium rich amorphous phase and crystalline SrTiO3, and strontium rich films are believed top correspond to a (SrTiO3)m (SrO)n structure. The dielectric constant slowly decreased as the film thickness was reduced. The sharp decrease observed near 400–500 Å could be due to the existence of some perturbed layer at the interface with one or both of the electrodes  相似文献   

10.
Barium strontium titanate (Ba0.6Sr0.4TiO3) nanostructured thin films have been deposited on platinized silicon substrates by the sol-gel method. The as-fired films were found to be amorphous, which crystallize to cubic phase after annealing at 550°C in air for one hour. The low-frequency dielectric responses of the BST films were measured as functions of frequency range from 1 kHz to 1MHz. The thickness dependence dielectric constant of the BST thin films were measured in the temperature range from ?150°C to 150°C at 100 kHz and discussed in the light of an interfacial dead layer. All the samples showed a diffuse type phase transitions. Both the dielectric constant and loss tangent showed anomaly peaks at about 10°C, which corresponds to a tetragonal ferroelectric-to-cubic paraelectric phase transition.  相似文献   

11.
Abstract

Thin film barium strontium titanate (BST) shows great promise for voltage tunable dielectric devices for use at RF and microwave frequencies. An MOCVD process has been developed for production of BST, resulting in films with very low losses (as low as 0.002–0.004) and tunabilities over 50% at low operation voltages. With these values of BST loss, overall device quality factors at RF (100 MHz+) frequencies are primarily limited by losses in the thin metal electrodes, such as Pt, normally used for ferroelectric thin films. The bottom electrode in parallel plate capacitor structures is particularly challenging, since it must provide a good growth surface for BST and be stable at high (>600 °C) growth temperatures in an oxidizing atmosphere yet have high conductivity and compatibility with Si or SiO2/Si substrates. These challenges have previously prevented use of Pt thicknesses over 0.1–0.2 urn. Our solution to this problem, involves combinations of adhesion layers at the Pt/SiO2 interface and embedded stabilization layers to make functioning Pt bottom electrodes as thick as 2 μm. Devices with dielectric Q factors over 150 at 100 MHz (tan δ ~ 0.006 as measured and modeled by S-parameters) and overall device Q factors over 50 at 30 MHz are described. We have also inserted these devices into tunable filters, achieving tunabilities of 50% and low insertion losses (0.3 dB) at RF frequencies.  相似文献   

12.
Ba0.65Sr0.35TiO3 (BST) thin films have been prepared by radio frequency magnetron sputtering on fused quartz at different substrate temperatures. Optical constants (refractive index n, extinction coefficient k) were determined from the optical transmittance spectra using the envelope method. The dispersion relationship of the refractive index vs. substrate temperature was also investigated. The refractive index of BST thin films increased from 1.778 to 1.961 (at λ?=?650 nm) as deposited temperature increases from 560°C to 650°C. The extinction coefficient of as-deposited BST thin films increased with the increase of the oxygen-to-argon ratio, which was due to the change of the film stoichiometry, structure, and texture of BST thin films. The oxygen-to-argon ratio also affected the fluorescence spectra. The fluorescence peaks intensity was greatly increased, apparent frequency shift was detected, and the linewidth became narrow as the ratio of oxygen to argon increased from 1:4 to 1:1. The fluorescence spectra also indicated the band transition of BST thin films was an indirect gap transition.  相似文献   

13.
Ba x Sr1?x TiO3 (BST) thin films were grown on different substrates with or without LaNiO3 (LNO) layer by a modified sol–gel process. The BST thin films obtained have full perovskite phase with dense and crack-free surface. BST thin films on different substrates with LNO layer show (100) preferential orientation, the texture coefficient (TC) value is calculated to be about 42.7%, whereas those without LNO layer show a fairly reduced preferential orientation, the TC value is just about 24.8%. It is considered that the preferential orientation is induced by the interface stress between LNO and BST. Electrical property measurements showed that BST thin film with a LNO interlayer has lower capacitance and larger dielectric loss, which is due to smaller grains of the thin film.  相似文献   

14.
LiMn2O4 thin films prepared on a Pt/Ti/SiO2/Si(100) substrate by pulsed laser deposition were studied with focusing on the effects of different processing conditions and Sn substitution on phase evolvement and surface microstructure. Major experimental parameters include substrate temperature up to 770 °C and working oxygen pressure of 50–250 mTorr. LiMn2O4 thin films became highly crystallized with increased grain sizes as the substrate temperature increased. Second phases such as LiMnO2 and Li2Mn2O4 were found at the temperature of 300 and 770 °C, respectively. As an optimum condition, films grown at 450 °C showed a homogeneous spinel phase with well-defined crystallinity and smooth surface. A high pressure of oxygen tended to promote crystallization and grain growth. Working pressure did not affect significantly the phase formation of the thin films except that unexpected LiMn3O4 phase formed at the lowest oxygen pressure of 50 mTorr. Tin-substituted thin films showed lower Mn–O stretching vibrations, which suggests that more Li-ions can be inserted into vacant octahedral sites of the spinel structure.  相似文献   

15.
Abstract

MFIS structures having excellent clear interfaces and well-crystallized ferroelectric layer were successfully fabricated by a newly developed ultra thin metal buffer layer process on SiO2/Si. We examined the effect of sputtered Zr or ZrO2 ultra thin films as a buffer layer for PbxLa1?xTiO3 (PLT) growth. TEM observation revealed that the buffer layer formation process in which Zr oxidized after the metal deposition had advantages to produce MFIS structures. This method is also superior for the crystallization and the control of the orientation of PLT thin film on amorphous SiO2. Especially, for buffer layer thicknesses below 10 nm, preferred c-axis oriented PLT thin films were grown. The I-V characteristics of MFIS-FET fabricated by the proposed method showed a clear memory window due to the remanent polarization of the ferroelectric thin film. This process is the most attractive candidate for realizing MFIS structure memory.  相似文献   

16.
Abstract

Ferroelectric SrBi2Ta2O9 thin films were deposited on the Bi2O3 buffered Pt/Ti/SiO2/Si substrates using liquid-delivery metalorganic chemical vapor deposition. SBT films with 5nm thick-Bi2O3 buffer layer on Pt bottom electrode showed stronger (115) orientation than those without Bi2O3 buffer layer after annealing at 750°C. The value of the remanent polarization of SBT films with Bi2O3 buffer layer were improved significantly in comparison with those for the films without Bi2O3 buffer layer. The remanent polarization(2Pr) and coercive field(Ec) of SBT films without and with Bi2O3buffer layer annealed at 750°C were 11.9, 20.8 μ C/cm2 and 57, 37.8kV/cm at an applied voltage of 5 V, respectively.  相似文献   

17.
Abstract

Ba1-x SrxTiO3 (BST) thin films were deposited by reactive rf-magnetron sputtering onto Si substrates. The influence of the deposition parameters such as temperature and oxygen ambient on the dielectric constant of the films is presented. BST films deposited at 450°C and optimum conditions exhibited a dielectric constant of approximately 200 at frequencies as high as 1GHz. In addition, the films were found to have leakage current densities of <0.1μAmp/cm2 at fields of 5×105V/cm. An extrapolated lifetime greater than 10 years was obtained from stress tests at elevated temperatures and fields. These films compared favorably with published data.  相似文献   

18.
Pb(Zr,Ti)O3 (PZT) thin films deposited on insulating ZrO2 buffered silicon wafer are intended to be employed for in-plane polarized piezoelectric MEMS devices. Multi-target reactive sputtering system for large area deposition of in-situ crystallized PZT thin films and the ZrO2 buffer layer has been employed. The interface analysis of multilayer structures by high resolution transmission microscope, X-ray diffraction, optical refraction, and absorption spectra studies has been presented. At a substrate temperature of 520°C and excess lead deposition condition, the formation of a PZT superstructure has been revealed. The substrate temperature of 580°C leads to the crystallization of PZT directly into a single phase perovskite crystal structure. A pronounced Urbach behavior in our PZT thin films has been observed by optical absorption studies. The surface roughness of PZT films deposited on a ZrO2 buffer layer is much higher than that on conducting platinized silicon wafer.  相似文献   

19.
Abstract

Pb(Zh x , Ti1-x )O3(PZT) thin films were deposited on Si substrates using MgTiO3 as the buffer layer and the electrical properties of those MFIS structures were investigated. PZT and MgTiO3 films were made by MOCVD using ultrasonic spraying technique. Perovskite PZT films have been succesfully made at the substrate temperature of 550 to 600°C only when using MgTiO3 buffer layer. AES depth profile analysis and RBS analysis revealed that there is no remarkable interdiffusion and no formation of reaction layer between PZT and MgTiO3 and/or between MgTiO3 and Si substrate. The capacitance-voltage (C-V) curves of the MFIS structure which were made with PZT and MgTiO3buffer layer have shown the hysteresis resulted from the ferroelectric switching of the PZT films.  相似文献   

20.
Abstract

Lead titanate (PbTiO3) thin films have been prepared on titanium dioxide coated silicon wafers by chemical vapor deposition (CVD). The pure PbTiO3 thin films were deposited by controlling the experimental conditions. The gas phase reaction of TiO2 occurred by exceeding the critical value of titanium input fraction at constant oxygen partial pressure. Strontium titanate (SrTiO3) thin films have been prepared on p-type silicon wafers by radio frequency (RF) magnetron sputtering. The SrTiO3 thin film was polycrystalline and the Sr/Ti ratio of this film was 0.91. The SrTiO3 thin films contain three regions, an external surface layer, a main layer and an interfacial layer. The stoichiometric SrTiO3 thin film was obtained by using the SrO excess target. The SrTiO3 film annealed at 600[ddot]C has an ideal capacitance-voltage (C-V) curve and maximum effective dielectric constant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号