首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper deals with the simultaneous removal of H2S and COS in the temperature range of 400-650 °C at 1 bar by using iron-based sorbents. The iron-based sorbents were prepared using iron oxide and cerium oxide with coal fine ash as the support. Simulated coal gas was used in the sulfidation experiments and 5% O2 in N2 gas was used for regeneration of sorbents. Both sulfidation and regeneration experiments have been carried out using a fixed-bed quartz reactor. The product gases were analyzed using a GC equipped with a TCD and a FPD. The results demonstrated that both H2S and COS can be effectively reduced using the iron-based sorbents supported on fine coal ash. XRD analysis shows that Fe1−xS phase has formed during sulfidation indicating a high sulfur capacity of the sorbent. The mechanism of the removal of COS simultaneously with H2S is also discussed.  相似文献   

2.
A series of iron-manganese-based sorbents were prepared by co-precipitation and physical mixing method, and used for H2S removal from hot coal gas. The sulfidation tests were carried out in a fixed-bed reactor with space velocity of 2000 h−1(STP). The results show that the suitable addition of manganese oxide in iron-based sorbent can decrease H2S and COS concentration in exit before breakthrough due to its simultaneous reaction capability with H2S and COS. Fe3O4 and MnO are the initial active components in iron-manganese-based sorbent, and FeO and Fe are active components formed by reduction during sulfidation. The crystal phases of iron affect obviously their desulfurization capacity. The reducibility of sorbent changes with the content of MnO in sorbent. S7F3M and S3F7M have bigger sulfur capacities (32.68 and 32.30 gS/100 g total active component), while S5F5M has smaller sulfur capacity (21.92 gS/100 g total active component). S7F3M sorbent has stable sulfidation performance in three sulfidation-regeneration cycles and no apparent structure degradation. The sulfidation performance of iron-manganese-based sorbent is also related with its specific surface area and pore volume.  相似文献   

3.
A commercial metal oxide sorbent for the desulphurization of coal-derived gas requires high desulphurization reactivity, mechanical strength, ability to regenerate, and stability to endure many sulfidation-regeneration cycles. In this paper, the sulfur capacity and multiple cycles of a nickel-modified ZnFe2O4 sorbent prepared by the sol-gel auto-combustion method were measured in a fixed-bed reactor at middle temperature of 300°C (sulfidation temperature) and 500°C (regeneration temperature). Also, the BET surface area, pore volume, average pore diameter and X-ray diffraction (XRD) patterns of the sorbent through multicycles were studied. Multicycle runs indicate that the sulfidation reactivity decreases slightly during the second cycle and keeps steady in the following cycles. The results indicate that the nickel-modified ZnFe2O4 keeps high reactivity and structural stability in the multicycle testing of sulfidation/regeneration.  相似文献   

4.
A commercial metal oxide sorbent for the desulphurization of coal-derived gas requires high desulphurization reactivity, mechanical strength, ability to regenerate, and stability to endure many sulfidation-regeneration cycles. In this paper, the sulfur capacity and multiple cycles of a nickel-modified ZnFe2O4 sorbent prepared by the sol-gel auto-combustion method were measured in a fixed-bed reactor at middle temperature of 300°C (sulfidation temperature) and 500°C (regeneration temperature). Also, the BET surface area, pore volume, average pore diameter and X-ray diffraction (XRD) patterns of the sorbent through multicycles were studied. Multicycle runs indicate that the sulfidation reactivity decreases slightly during the second cycle and keeps steady in the following cycles. The results indicate that the nickel-modified ZnFe2O4 keeps high reactivity and structural stability in the multicycle testing of sulfidation/regeneration.  相似文献   

5.
A series of iron-based sorbents prepared with iron trioxide hydrate, cupric oxide by a novel method was studied in a fixed-bed reactor for COS removal from syngas at moderate temperature. In addition, the sorbents mixed with various additives in different ratios were tested. The effects of additive type and ratio on the breakthrough capacity and desulfurization performance, as well as the influence of operating conditions on sulfidation behavior of the sorbent, were investigated. The simulate gas contained 1% COS, 5% CO2, 20%–30% CO and 60%–70% H2. The outlet gases from the fixed-bed reactor were automatically analyzed by on-line mass spectrometry, and the COS concentration before breakthrough can be kept steady at 1 ppmv. The result shows that the breakthrough sulfur capacity of the sorbent is as high as 25 g-S/100 g. At 700 K and space velocity of 1000 h−1, the efficiency of sulfur removal and breakthrough sulfur capacity of the sorbent increase with the increase of copper oxide with an optimum value. The result shows that the species and content of additives also affect desulfurization performance of the sorbent.  相似文献   

6.
The sulfur removing capacities of various Zn-Ti-based sorbents were investigated in the presence of H2O and HCl at high-(sulfidation, 650 °C; regeneration, 800 °C) and medium-(sulfidation, 480 °C; regeneration, 580 °C) temperature conditions. The H2O effect of all sorbents was not observed at high-temperature conditions. At mediumtemperature conditions, the reaction rate of ZT (Zn/Ti : 1.5) sorbent decreased with the level of H2O concentration, while modified (ZTC, ZTN) sorbents were not affected by the water vapor. HCl vapor resulted in the deactivation of ZT sorbent with a cycle number at high-temperature due to the production of ZnCl2 while the sulfur removing capacities of ZTC and ZTN sorbents were maintained during 4–5 cyclic tests. In the case of medium-temperature conditions, ZT sorbent was poisoned by HCl vapor while cobalt and nickel added to ZT sorbent played an important catalytic role to prevent from being poisoned by HCl due to providing heat, emitted when these additives quickly react with H2S even at medium-temperature conditions, to the sorbents  相似文献   

7.
(Communicated by H.L. Toor)

Regeneration of sulfided dolomite in CO2, an alternative to regeneration in CO2/H2O, has been conducted in a TGA system up to 20 cycles under the optimal regeneration condition. The solid sorbent has shown a much slower deterioration in sulfidation capacity upon cycling by regeneration in CO2 than in CO2/H2O. The utilization of Ca reached 50% in the 20th cycle, compared with the 20% by the CO2/H2O regeneration. The XES sulfur profile of partially reacted samples indicated a switch in reaction pattern, both in sulfidation and regeneration, from topochemical to nonlopochemical at the 3th/4th cycle. Incorporaling the concept of solid deactivation, a cyclic regeneration model was developed and successfully predicts the progress of regeneration in a specific cycle and the trend of change in reaction pattern.  相似文献   

8.
Y.G. Pan 《Fuel》2005,84(9):1105-1109
Although a number of reports on sorbents containing ZnO for H2S removal from coal-derived gases can be found in the literature, it is shown in our study that a special sorbent containing Fe2O3·FeO (SFO) with minor promoters (Al2O3, K2O, and CaO) as the main active species is more attractive for both sulfidation and regeneration stages, also under economic considerations. This paper presents the kinetic behaviour of SFO in a hot gas desulfurization process using a thermogravimetric analysis under isothermal condition in the operating range between 500 and 800 °C. The gas stream was N2 with a 2% wt of H2S. Experiences carried out on sorbent sulfidation with SFO (particle sizes in the range of 0.042-0.12 mm) indicate that the sorbent sulfidation capacity sharply increases with temperature in the range of 500-600 °C. It is also shown that the sample weight reaches its maximum absorption capacity, near saturation, at 600 °C so that it makes no sense to increase the sulfidation temperature from this point. To make a comparison between SFO and a zinc titanate based sorbent, a set of sulfidation tests was carried out at 600 °C during 7200 s using the same sieve range for both sorbents between 42 and 90 μm. Results show that the sulfidation capacity of SFO is 1.9 times higher than that of zinc titanate.  相似文献   

9.
H2 regeneration of an activated carbon supported vanadium and cobalt oxides (V2O5-CoO/AC) catalyst–sorbent used for flue gas SO2 removal is studied in this paper. Elemental sulfur is produced during the H2-regeneration when effluent gas of the regeneration is recycled back to the reactor. The regeneration conditions affect the regeneration efficiency and the elemental sulfur yield. The regeneration efficiency is the highest at 330 °C, with SO2 as the product. The production of elemental sulfur occurs at 350 °C and higher with the highest elemental sulfur yield of 9.8 mg-S/g-Cat. at 380 °C. A lower effluent gas recycle rate is beneficial to elemental sulfur production. Intermittent H2 feeding strategy can be used to control H2S concentration in the gas phase and increase the elemental sulfur yield. Two types of reactions occur in the regeneration, reduction of sulfuric acid to SO2 by AC and reduction of SO2 to elemental sulfur through Claus reaction. H2S is an intermediate, which is important for elemental sulfur formation and for conversion of CoO to CoS that catalyzes the Claus reaction. The catalyst–sorbent exhibits good stability in SO2 removal capacity and in elemental sulfur yield.  相似文献   

10.
Xiurong Ren  Fan Li  Kechang Xie 《Fuel》2010,89(4):883-887
Iron-based sorbent was preferable for desulfurization from coal-derived gas due to economic consideration and favorable dynamic property. The intrinsic behavior of Fe-based sorbent should be primarily understood in the sulfidation process for improving its performance. A series of tests were carried out with Fe2O3, Fe and other compounds containing-Fe (FO) made from the same precursor FeC2O4·2H2O in H2S-N2 mixture in this study. The formation of H2 was observed with Fe and FO as sorbents. While SO2 was detected with FO and Fe2O3 as sorbents, its concentration in outlet was gradually decreased. The crystal phase and surface chemical state of fresh and sulfided Fe2O3 with different reaction times were characterized by XRD and XPS measurements. The result suggested that the intrinsic H2S removal by Fe2O3 would produce multi-phase of sulfides. The possible mechanism of sulfidation reaction was discussed.  相似文献   

11.
The sulfidation and regeneration properties of lignite char-supported iron-based sorbent for coke oven gas (COG) desulfurization prepared by mechanical stirring (MS), ultrasonic assisted impregnation (UAI), and high pressure impregnation (HPI) were investigated in a fixed-bed reactor. During desulfurization, the effects of process parameters on sulfidation properties were studied systematically. The physical and chemical properties of the sorbents were analyzed by X-ray diffraction (XRD), scanning electron microscope coupled with energy dispersive spectroscopy (SEM-EDS), Fourier transform infrared (FTIR) and BET surface area analysis. The results of desulfurization experiments showed that high pressure impregnation (HPI) enhanced the sulfidation properties of the sorbents at the breakthrough time for char-supported iron sorbents. HPI method also increased the surface area and pore volume of sorbents. Sulfur capacity of sorbents was enhanced with increasing sulfidation temperatures and reached its maximum value at 400 °C. It was observed that the presence of steam in coke oven gas can inhibit the desulfurization performance of sorbent. SO2 regeneration of sorbent resulted in formation of elemental sulfur. HPIF10 sorbent showed good stability during sulfide-regeneration cycles without changing its performance significantly.  相似文献   

12.
To remove acetonitrile, various activated carbon (AC)-based sorbents impregnated with alkali or alkaline earth metal were tested in a fixed-bed quartz reactor at 30 °C. The AC-based sorbents impregnated with sodium (NaAC) showed more enhanced acetonitrile removal capacities than that of the pure AC sorbent despite a notable decrease in their surface areas and pore volumes. The NaAC-10 sorbent (with 10 wt% sodium carbonate) especially showed an excellent acetonitrile removal capacity (15mg CH3CN/g sorbent) and regeneration ability, which indicates that the alkali metal was the adsorption site of the acetonitrile.  相似文献   

13.
锰系可再生高温脱硫剂的制备及其性能测试   总被引:3,自引:0,他引:3       下载免费PDF全文
郭婧  王菊  梁斌 《化工学报》2013,64(7):2580-2586
煤气的高温脱硫净化是 IGCC 和 DRI 生产的瓶颈,直接影响整个过程的热效率。在50℃、pH值约为9的条件下采用硝酸锰、硝酸铝混合溶液与氨水进行共沉淀,制备了锰含量不同的脱硫剂,在固定床反应器中考察了脱硫剂的硫化及再生性能,并利用XRD、SEM、BET等手段表征了脱硫剂在硫化/再生过程中的物相和结构变化。共沉淀法制备的脱硫剂Mn/Al分散性好,在850℃高温下进行脱硫反应可以定量快速进行。脱硫硫容与脱硫剂锰含量呈正比,Mn-S/Mn-O交换原子比在0.90~0.95之间,改变空速和进口H2S含量并不改变脱硫硫容。采用O2浓度为3%的稀释空气在850℃下再生,再生后的硫容稳定,说明所制备的脱硫剂可用于高温可再生脱硫。  相似文献   

14.
To improve the poor SO2 absorption rate of CeFeMgTi sorbent with high sulfur removal capacity and fast regeneration, a new sorbent, CeFeMgTi-sol was prepared by the modified co-precipitation method and tested in a packed bed reactor at RFCC conditions (sulfation of MgO to MgSO4 in the presence of low concentration of SO2 at 973 K, regeneration of MgSO4 to MgO and H2S in the presence of H2 at 803 K). The CeFeMgTi-sol sorbent showed excellent SO2 absorption and sulfur removal capacity (46.2 sulfur g/g absorbent×100). It was found that the SO2 absorption rates were related to the structure of the Mg and Ti and the textural properties such as surface area and pore volume. In the case of the fresh state of CeFeMgTi sorbent, CeO2, MgO and MgTiO3 structures were observed. But the new CeFeMgTisol sorbent before SO2 absorption, showed a separated MgO and TiO2 peak only. These differences in the sorption rates were discussed by the difference in the XRD pattern, surface area and pore volume.  相似文献   

15.
Natural manganese ores were selected as raw materials for the desulfurization sorbent because of economical efficiency and high reactivity on hydrogen sulfide. Initial reaction rates between H2S and desulfurization sorbent of natural manganese ores were determined in a temperature range of 400-800°C using a thermobalance reactor. All reactions were first order with respect to H2S and were expressed by the Arrhenius relation. When the sulfidation reaction was controlled by diffusion, the temperature dependence of the effective diffusivity was given by the Arrhenius equation. Activation energies and frequency factors were obtained from the product layer diffusion coefficient of various sorbents by plotting as an Arrhenius equation form. Several additives were mixed to improve the sulfidation capacity, and NiO was the best additive.  相似文献   

16.
The effect of bed height on CO2 capture was investigated by carbonation/regeneration cyclic operations using a bubbling fluidized bed reactor. We used a potassium-based solid sorbent, SorbKX35T5 which was manufactured by the Korea Electric Power Research Institute. The sorbent consists of 35% K2CO3 for absorption and 65% supporters for mechanical strength. We used a fluidized bed reactor with an inner diameter of 0.05 m and a height of 0.8 m which was made of quartz and placed inside of a furnace. The operating temperatures were fixed at 70 °C and 150 °C for carbonation and regeneration, respectively. The carbonation/regeneration cyclic operations were performed three times at four different L/D (length vs diameter) ratios such as one, two, three, and four. The amount of CO2 captured was the most when L/D ratio was one, while the period of maintaining 100% CO2 removal was the longest as 6 minutes when L/D ratio was three. At each cycle, CO2 sorption capacity (g CO2/g sorbent) was decreased as L/D ratio was increased. The results obtained in this study can be applied to design and operate a large scale CO2 capture process composed of two fluidized bed reactors. This work was presented at the 7 th China-Korea Workshop on Clean Energy Technology held at Taiyuan, Shanxi, China, June 26–28, 2008.  相似文献   

17.
The H2S retention with Ca-based sorbents in a pressurized fixed-bed reactor (1 MPa) has been analyzed, obtaining the breakthrough curves with a dolomite and two different limestones, different particle size (+0.8-1.0, +1.25-1.6, and +1.6-2.0 mm), and both at calcining (1173 K) and non-calcining conditions (1123 K). The effect of the stoichiometric time in the breakthrough curves has been analyzed varying the bed length, the gas velocity and the sorbent fraction in the bed. From these results, the conversion and H2S concentration profiles in the transition zone and the length of unused bed (LUB) have been determined. H2S retention in fixed-bed until concentration close to the given by the thermodynamic equilibrium was obtained using dolomite or limestone at calcining conditions, and dolomite at non-calcining conditions. The results of H2S retention in a fixed-bed reactor has been applied to the calculus of the minimum height of a countercurrent moving-bed reactor to obtain the maximum H2S retention with the minimum amount of sorbent. A mathematical model was developed to predict the experimental results obtained in the fixed-bed reactor, which was also valid for the design of countercurrent moving-bed reactors for gas desulphurization.  相似文献   

18.
Hot Gas Desulfurizarion for IGCC is a new method to efficiently remove H2S in fuel gas with regenerable sorbents at high temperature and high-pressure conditions. The Korea Institute of Energy Research did operation of sulfidation in a desulfurizer and regeneration in a regenerator simultaneously at high pressure and high temperature conditions. The H2S concentration at exit was maintained continuously below 50ppmv at 11,000 ppmv of inlet H2S concentration. The sorbent had little effect on the reducing power in the inlet gas in the range from 11% to 33% of H2. As inlet H2S concentration was increased, H2S concentration in the product gas was also increased linearly. The sorbent was maintained at low sulfur level by the continuous regeneration and the continuous solid circulation at the rate of 1.58× 10−3 kg/s with little mean particle size change.  相似文献   

19.
To find optimal temperature of the reaction between H2S gas and ZnO-5 at% Fe2O3 sorbent, the effluent gas from a fixed-bed reactor was analyzed by gas chromatography. The experimental results showed that H2S removal efficiency of sorbent was maximum at 650°C and EDX data were in accordance with this feature. XRD analysis exhibited intriguing phenomenon in that different mechanisms were observed at different temperatures. Chemisorption and chemical reaction was considered to be the main mechanism of H2S removal at 600 C and 650°C, respectively. SEM photographs supported this interesting phenomenon, but unfortunately TGA and DTA results could not distinguish it. To investigate the effect of sorbent deactivation on the reaction rate, deactivating factor was considered.  相似文献   

20.
A high capacity and regenerable manganese based sorbent for desulfurization of hot dry fuel gas from coal gasification has been developed. Pure γ-Al2O3 and washcoated cordierite monoliths impregnated with manganese acetate and calcined at 973 K resulted in highly dispersed Mn3O4 on γ-Al2O3. MnS was formed during sulfidation and MnAl2O4 during subsequent regeneration with steam. The optimal operation temperature was found to be between 1123 and 1223 K. The maximum capacity of the acceptor was 17 mass% sulfur which was obtained for a 32 mass% manganese loading. A deactivation test of 65 subsequent sulfidation and regeneration cycles showed minor deactivation during the first cycles followed by a stable performance. This sorbent will be used in a rotating monolith reactor in which absorption and regeneration takes place simultaneously in separate sections, which enables a continuous operation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号