首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
研制了一种基于AlGaN/GaN HEMT的功率合成技术的混合集成放大器电路.该电路包含4个10×120 μm的HEMT晶体管以及一个Wilkinson功率合成器和分配器.在偏置条件为VDS=40V,IDS=0.9A时,输出连续波饱和功率在5.4GHz达到41.4dBm,最大的PAE为32.54%,并且功率合成效率达到69%.  相似文献   

2.
利用内匹配和功率合成技术设计了X波段AlGaN/GaN HEMT功率合成放大器.电路包含有四个AlGaN/GaN HEMT和制作在Al2O3陶瓷基片上的输入输出匹配电路.在偏置条件VDS=30 V,IDS=700 mA时8 GHz测出连续波饱和输出功率达到Pat=40 dBm(10 W),最大PAE=37.44%,线性增益9 dB.  相似文献   

3.
我们设计研制了一个基于Al GaN/GaN HEMT大功率放大器的混合集成电路.这个电路包含了1个10×120μm的HEMT晶体管,以及输入和输出匹配电路.在偏置条件为Vds=40 V,Ids=0.26 A时,输出连续波饱和功率在5.4 GHz达到37 dBm(5 W),最大的PAE为35.6%.在偏置条件为Vds=30 V,Ids=0.22 A时输出连续波饱和功率在5.4 GHz达到36.4dBm(4.4 W),最大的PAE为42.7%.  相似文献   

4.
论述了一个在8 GHz下基于AlGaN/GaN HEMT功率放大器HMIC的设计、制备与测试.该电路包含了1个10×100 μm的AlGaN/GaN HEMT和输入输出匹配电路.在偏置条件为VDS=40 V、IDS=0.16 A时输出连续波饱和功率在8 GHz达到36.5 dBm(4.5 W),PAE为60%,线性增益10 dB;在偏置条件为VDS=30 V、IDS=0.19 A时输出连续波饱和功率在8 GHz达到35.6 dBm(3.6 W),PAE为47%,线性增益9 dB.  相似文献   

5.
《电子与封装》2018,(1):34-38
采用内匹配和功率合成技术,设计了C波段GaN HEMT高功率放大器。电路采用6胞芯片进行功率合成,在陶瓷(Al2O3)基片上设计制作功分器,使其输入输出阻抗均为50Ω。实际脉冲测试该功放饱和输出功率达到220 W以上,增益大于11 d B,功率附加效率大于48%,功率合成效率比达到90%。  相似文献   

6.
本文利用自主研制的SiC 衬底的,栅宽为2.5mm的AlGaN/GaN HEMT器件,设计完成了X波段氮化镓合成固态放大器模块。模块由AlGaN/GaN HEMT器件,Wilkinson功率合成/分配器,偏置电路和微带匹配电路构成。为了使放大器稳定,在每一路放大器的输入端和输出端加入了RC 稳定网络,在栅极和直流输入之间加上稳定电阻,并且利用3/4 λ 枝接的威尔金森功率合成/分配器,从而有效消除其自激和低频串扰问题。在连续波条件下(直流偏置电压为Vds=27V,Vgs=-4.0V),放大器在8GHz频率下线性增益为5dB,最大效率为17.9%,输出功率最大可为42.93dBm,此时放大器增益压缩为3dB。四路合成放大器的合成效率是67.5%。通过分析,发现了放大器合成效率的下降是由每路放大器特性的不一致、功率合成网络的损耗以及电路制造误差所造成。  相似文献   

7.
研制了面向X波段应用的InGaP/GaAs HBT混合集成功率合成放大器模块. 电路采用一种新颖的具有片上RC稳定网络的InGaP/GaAs HBT功率管作为功率合成单元以提高电路的稳定性,并采用紧凑的微带线并联匹配网络进行功率分配和合成. 在8.1GHz,偏置为Vcc=7V, Ic=230mA的AB类工作条件下,连续波最大输出功率为28.9dBm,功率合成效率达到80%.  相似文献   

8.
研制了面向X波段应用的InGaP/GaAs HBT混合集成功率合成放大器模块.电路采用一种新颖的具有片上RC稳定网络的InGaP/GaAs HBT功率管作为功率合成单元以提高电路的稳定性,并采用紧凑的微带线并联匹配网络进行功率分配和合成.在8.1GHz,偏置为Vcc=7V,Ic=230mA的AB类工作条件下,连续波最大输出功率为28.9dBm,功率合成效率达到80%.  相似文献   

9.
X波段GaN单片电路低噪声放大器   总被引:1,自引:1,他引:0  
采用0.25μm GaN HEMT制备工艺在AlGaN/GaN异质结材料上研制了高性能X波段GaN单片电路低噪声放大器.GaN低噪声单片电路采取两级微带线结构,10V偏压下芯片在X波段范围内获得了低于2.2 dB的噪声系数,增益达到18 dB以上,耐受功率达到了27 dBm.在耐受功率测试中发现GaN低噪声HEMT器件...  相似文献   

10.
采用0.15μm栅长GaN高电子迁移率晶体管(HEMT)工艺,研制了一款Ka波段大功率、高效率功率放大器单片微波集成电路(MMIC)。电路采用三级放大结构,在输入、输出端采用Lange耦合器进行功率分配和合成,输入匹配网络加入RC稳定结构以提升电路稳定性,末级器件采用改进型电抗式Bus-bar总线合成匹配网络,在保证各路平衡性的同时,调整器件电压和电流波形,提高电路的输出功率和功率附加效率。测试结果表明,在34~36 GHz频带内,放大器MMIC的饱和输出功率达到40 W,功率增益达到18 dB,功率附加效率达到30%。该功率放大器可有效改善毫米波发射系统的信号传输距离和作用精度。  相似文献   

11.
This paper presents a new approach for power amplifier design using deep submicron CMOS technologies. A transformer based voltage combiner is proposed to combine power generated from several low-voltage CMOS amplifiers. Unlike other voltage combining transformers, the architecture presented in this paper provides greater flexibility to access and control the individual amplifiers in a voltage combined amplifier. In this work, this voltage combining transformer has been utilized to control output power and improve average efficiency at power back-off. This technique does not degrade instantaneous efficiency at peak power and maintains voltage gain with power back-off. A 1.2 V, 2.4 GHz fully integrated CMOS power amplifier prototype was implemented with thin-oxide transistors in a 0.13 mum RF-CMOS process to demonstrate the concept. Neither off-chip components nor bondwires are used for output matching. The power amplifier transmits 24 dBm power with 25% drain efficiency at 1 dB compression point. When driven into saturation, it transmits 27 dBm peak power with 32% drain efficiency. At power back-off, efficiency is greatly improved in the prototype which employs average efficiency enhancement circuitry.  相似文献   

12.
杨倩  叶松  姜丹丹 《微电子学》2019,49(6):760-764, 771
设计了一种基于65 nm CMOS工艺的60 GHz功率放大器。采用共源共栅结构与电容中和共源级结构相结合的方式来提高功率放大器的增益,并采用两路差分结构来提高输出功率。采用片上变压器作为输入/输出匹配及级间匹配,以减小芯片的面积,从而降低成本。采用Cadence、ADS和Momentum等软件进行联合仿真。后仿真结果表明,在工作频段为60 GHz时,最大小信号增益为26 dB,最大功率附加效率为18.6%,饱和输出功率为15.2 dBm。该功率放大器具有高增益、高效率、低成本等优点。  相似文献   

13.
为获得振幅和相位一致性较好的空间功率合成结构,对径向波导电磁场分布进行了理论分析,推导出径向波导内存在TM_(00)主模.根据TM_(00)波电磁场的轴向对称性,提出了径向波导功分器的简化电磁模型和等效电路.并由此研制出了性能良好的X波段159 W固态功率放大器.在整个X波段,无源合成网络的合成效率都大于88%.含单片微波集成电路芯片(MMIC)的整体合成固态功放合成效率在整个MMIC工作频率范围内(11.9~12.3 GHz)大于83%.  相似文献   

14.
基于0.13μm SiGe HBT工艺,设计应用于无线局域网(WLAN)802.11b/g频段范围内的高增益射频功率放大器.该功放工作在AB类,由三级放大电路级联构成,并带有温度补偿和线性化的偏置电路.仿真结果显示:功率增益高达30dB,1dB压缩点输出功率为24dBm,电路的S参数S11在1.5~4GHz大的频率范围内均小于-17dB,S21大于30dB,输出匹配S22小于-10dB,S12小于-90dB.最高效率可达42.7%,1dB压缩点效率为37%.  相似文献   

15.
无线通信技术高速发展,为实现高速数据传输,需要提高频谱带宽,因此,毫米波技术成为新一代无线通信的关键技术之一。同时,毫米波技术在成像、深空通信、电子对抗等方面都有着广泛的应用。然而,单个固态毫米波放大器的输出功率往往无法满足需求,功率合成技术成为实现高功率输出的必然方法。传统的毫米波功率合成放大器往往体积过大或带宽较窄, 文中提出了一种基于共面臂波导魔T的毫米波功率合成放大器,该放大器基于共面臂波导魔T、波导-微带双探针耦合结构和HMC906 功率放大器芯片,在Ka频段具有宽带、高合成效率和结构紧凑的特点。在27.5~32.5GHz范围内,功率合成放大器饱和输出功率大于8W,合成效率高于85%。与传统的基于分支耦合线的功率放大器相比,体积减小了40%以上。  相似文献   

16.
E类功率放大器是一种新型高效率放大器,属于开关模式功率放大器,其理论效率可以达到100%。可用于雷达、通信和电子对抗等领域的末级功率放大器,是系统高效率、高功率和小型化功率放大器的重要途径。通过分析其工作原理,设计了一款L波段高效E类功率放大器,输出功率大于10 W,实际漏极效率达到74.8%。  相似文献   

17.
党章  朱海帆  黄建 《微波学报》2019,35(4):21-25
提出一种不通过波导脊背与微带导带接触来实现脊波导-微带射频信号过渡的新型电路,具有工作频带宽、插入损耗小、电性能稳定等优点,非常适合工程应用。通过对该非接触式脊波导-微带过渡与Lange 电桥进行理论分析与仿真计算,提出了一种可覆盖C/ X/ Ku 频段的宽带功率合成方法,并按照该方案在6 ~18 GHz 频段内设计了一种以脊波导为射频端口的高效率2 路功率合成放大器。实测结果表明,6 ~18 GHz 频率范围内的无源合成效率高于87%。采用该电路将典型输出功率12 W 的2 只MMIC 的输出功率合成,在6 ~18 GHz 频率范围内得到了高于20 W 的饱和功率输出,附加效率最高可达28. 9%。该宽带功率合成放大器以脊波导为接口,不但功率容量大,且便于采用脊波导功率合成器进行高效率二次合成,为6 ~18 GHz 更大输出功率的固态功放研制提供了解决方案。  相似文献   

18.
介绍了移动通信用 Ga As HBT功率放大器的设计、制作 ,给出了电路拓扑。该两级放大电路在 180 0 MHz、3.6 V偏压下 ,相关增益 >30 d B,1分贝压缩点输出功率达到 2 8.8d Bm,饱和输出功率 >30 d Bm,最大效率 >37%。采用 Φ 76 mm工艺制作 ,工艺成品率高  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号