共查询到18条相似文献,搜索用时 62 毫秒
1.
2.
通过热风回流焊制备了Cu/Sn3.0Ag0.5Cu/Cu对接互连焊点,测试了未通电及6.5 A直流电下通电36 h和48 h后焊点的剪切强度.结果表明,电迁移显著地降低了焊点的剪切强度,电迁移36 h使剪切抗力降低约30%,电迁移48 h降低约50%.SEM观察断口和界面形貌表明,界面金属间化合物增厚使断裂由韧性向脆性... 相似文献
3.
4.
在28℃.3.25A直流电下,对Cu/Sn3.0Ag0.5Cu/Cu对接无铅焊点进行原位电迁移实验,观察了通电120,168,384和504 h后焊点横截面的微观组织形貌.结果表明,电迁移初期,Cu<,6>Sn<,5>化合物遍布整个焊点截面,随时间延长,不断从阴极向阳极迁移聚集;当通电504 h后,焊点内已看不到金属间... 相似文献
5.
为了研究电迁移过程中焊点与焊盘界面金属问化合物(IMC)的变化,在28℃下,对无铅Sn3.0Ag0.5Cu焊点进行了6.5A直流电下的电迁移实验.结果发现,通电144h后,阳极侧IMC层变厚,平均达到10.12 μm;阴极侧IMC层大部分区域变薄至0.86μm,局部出现Cu焊盘的溶解消失,但在界面边缘处出现Cu3Sn5... 相似文献
6.
7.
利用扫描电子显微镜(SEM)和透射电子显微镜(TEM)研究了Sn3.8Ag0.7Cu(Sn37Pb)/Cu焊点在时效过程中的界面金属间化合物(IMC)形貌和成份。结果表明:150℃高温时效50、100、200、500h后,Sn3.8Ag0.7Cu(Sn37Pb)/Cu焊点界面IMC尺寸和厚度增加明显,IMC颗粒间的沟槽越来越小。50h时效后界面出现双层IMC结构,靠近焊料的上层为Cu6Sn5,邻近基板的下层为Cu3Sn。之后利用透射电镜观察了Sn37Pb/Ni和Sn3.8Ag0.7Cu/Ni样品焊点界面,结果显示,焊点界面清晰,IMC晶粒明显。 相似文献
8.
基于ANSYS有限元软件,综合考虑电子风力、温度梯度、应力梯度和原子密度梯度四种电迁移驱动机制,采用原子密度积分法(ADI)对倒装芯片球栅阵列封装(FCBGA)的Sn0.7Cu无铅焊点进行电迁移失效模拟。针对焊点直径、焊点高度、焊点下金属层(UBM)厚度三个关键参数进行电迁移失效的正交试验优化,探究焊点尺寸对电迁移失效的影响。研究表明:焊点直径和高度的增加会缩短焊点的电迁移失效寿命(TTF),而UBM层厚度对焊点失效寿命的影响相对较小;焊点局部拉应力对焊点的失效寿命影响较大,通常会加剧焊点的空洞失效。 相似文献
9.
10.
11.
12.
Takayuki Kobayashi Andre Lee K. N. Subramanian 《Journal of Electronic Materials》2009,38(12):2659-2667
Impact behavior of Sn-3 wt.%Ag-0.5 wt.%Cu (SAC 305) solder joints subjected to thermomechanical fatigue in different temperature
regimes was investigated. This study was aimed at understanding the roles of distributed cracks that develop near the solder/substrate
interface region during early stages of thermal excursions. Two specimen geometries were employed to evaluate mode I and mode II
types of fracture under impact in solder joints several hundred microns thick. The peak stress that could be withstood in
mode I fracture under impact decreased with increasing number of thermomechanical fatigue cycles, while mode II fracture was
insensitive to the same. No observable influence on the impact strength due to the temperature regimes was noted. However,
the fracture surfaces of specimens subjected to thermal excursions at the lower-temperature regime were predominantly along
the Cu6Sn5/solder interface, while specimens subjected to the higher-temperature regime predominantly fractured along the Sn-Sn grain
boundaries. These observations are consistent with the findings of prior studies dealing with damage accumulation in the early
stages of thermal excursions in these temperature regimes. 相似文献
13.
14.
《Components and Packaging Technologies, IEEE Transactions on》2006,29(3):486-493
Precise solder bump shape prediction is crucial for the application of the solder jet bumping process to microelectronic component packaging. In the present study, numerical simulation of both the dynamics and phase change responses during a metal droplet impingement is conducted by introducing a nonconstant interfacial heat transfer coefficient, which varies with time and position. Comparison between the numerical and experimental results for a large metal droplet demonstrates the validity of the numerical method. The results of many simulation cases are presented corresponding to typical solder jet bumping conditions. Variations in the impact velocity, initial droplet size, and droplet temperature and substrate temperature are investigated to understand their impact on the formation of solder bumps. 相似文献
15.
《Advanced Packaging, IEEE Transactions on》2009,32(3):627-635
16.
采用Cu-Ni/Solder/Ni-Cu互连结构,在加载的电流密度为0.4×104 A/cm2的条件下,得到了界面阴极处金属原子的电迁移.数值模拟揭示了其原因是由于凸点互连结构的特殊性,电子流在流经凸点时会发生流向改变进而形成电流聚集,此处的电流密度超过电迁移的门槛值,从而诱发电迁移.运用高对流系数的热传导方法降低了互连焊点的实际温度,在电迁移的扩展阶段显著减小了高温引起的原子热迁移对电迁移的干扰;因此电迁移力是原子迁移的主要驱动力.在电迁移的快速失效阶段,原子的迁移是热迁移和电迁移共同作用的结果:电迁移力驱动阴极处原子的迁移,造成局部区域的快速温升,从而加剧此处原子的热迁移. 相似文献
17.
18.
The morphological evolution of Sn-9wt.%Zn solder under electromigration at a current density of about 105 A/cm2 was examined. Sn extrusion was observed, suggesting that Sn is the dominant moving species under electromigration. In contrast,
Zn appeared to be immobile. It was also found that the microstructure of the solder had a significant effect on the electromigration
behavior. For the solder with fine Zn precipitates, the surface morphology of the solder was almost unchanged except for the
formation of Sn extrusion sites at␣the anode side after electromigration. However, for the solder with coarse Zn precipitates,
more Sn extrusion sites were observed, and they were located not only at the anode side but also within the solder. Coarse
Zn precipitates appeared to block Sn migration, thus Sn migration was intercepted in front of the Zn precipitates. The Sn
atoms accumulated there, which led to its extrusion. The blocking effect was found to depend strongly on the size and orientation
of the Zn precipitates. 相似文献