首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this article, a current source inverter (CSI) fed induction motor drive with an optimal power distribution control is proposed for high-power applications. The CSI-fed drive is configured with a six-step CSI along with a pulsewidth modulated voltage source inverter (PWM–VSI) and capacitors. Due to the PWM–VSI and the capacitor, sinusoidal motor currents and voltages with high quality as well as natural commutation of the six-step CSI can be obtained. Since this CSI-fed drive can deliver required output power through both the six-step CSI and PWM–VSI, this article shows that the kVA ratings of both the inverters can be reduced by proper real power distribution. The optimal power distribution under load requirements, based on power flow modelling of the CSI-fed drive, is proposed to not only minimise the PWM–VSI rating but also reduce the six-step CSI rating. The dc-link current control of the six-step CSI is developed to realise the optimal power distribution. Furthermore, a vector controlled drive for high-power induction motors is proposed based on the optimal power distribution. Experimental results verify the high-power CSI-fed drive with the optimal power distribution control.  相似文献   

2.
Pulse width modulation strategies are applicable to current source inverters (CSIs). In particular, space vector modulation analysis developed for voltage source inverters (VSIs) is shown to apply to CSI. Using these tools, an equivalence between modulation patterns being used for VSI and those possible for CSI is established. A new modulation pattern is developed and analyzed for an eight-switch CSI, implementing neutral modulation. The analysis tools used to show the CSI/VSI equivalence in the standard case enable analysis of this eight-switch CSI structure. An improved modulation strategy arises from this analysis tool. An experimental eight-switch CSI circuit was constructed and a microcontroller was used to implement modulation based on space vector analysis. The resulting load voltage spectra shows on advantage over standard eight-switch CSIs  相似文献   

3.
This paper presents generalized techniques for realizing PWM patterns which provide selective harmonic elimination and current magnitude modulation (SHEM) for current source inverters/power converters (CSI/C). A combination of chops and short circuit pulses are positioned in such a way that lower order harmonics are eliminated selectively besides current magnitude modulation with minimum switching frequency. Generalized equations and tables which show the relationship of various PWM-SHEM parameters to the position of short circuit pulses and the number of chops per 30° are provided and discussed in detail  相似文献   

4.
Current source inverter (CSI) is an attractive solution in high-power drives. The conventional gate turn-off thyristor (GTO) based CSI-fed induction motor drives suffer from drawbacks such as low-frequency torque pulsation, harmonic heating, and unstable operation at low-speed ranges. These drawbacks can be overcome by connecting a current-controlled voltage source inverter (VSI) across the motor terminal replacing the bulky ac capacitors. The VSI provides the harmonic currents, which results in sinusoidal motor voltage and current even with the CSI switching at fundamental frequency. This paper proposes a CSI-fed induction motor drive scheme where GTOs are replaced by thyristors in the CSI without any external circuit to assist the turning off of the thyristors. Here, the current-controlled VSI, connected in shunt, is designed to supply the volt ampere reactive requirement of the induction motor, and the CSI is made to operate in leading power factor mode such that the thyristors in the CSI are autosequentially turned off. The resulting drive will be able to feed medium-voltage, high-power induction motors directly. A sensorless vector-controlled CSI drive based on the proposed configuration is developed. The experimental results from a 5 hp prototype are presented. Experimental results show that the proposed drive has stable operation throughout the operating range of speeds.  相似文献   

5.
A topology and switching algorithm are presented for producing split-phase output voltages using a current-sourced inverter (CSI). Split-phase generation has previously been accomplished using voltage-sourced inverters (VSIs). There are some advantages to instead using CSIs, such as improved output voltage waveform quality and built-in overcurrent protection; however, two issues have prevented their adoption to date. First, while a CSI does not require the input boost converter used by a VSI when fed from a low-voltage source, it may require a preconditioning circuit to provide the required dc current. Second, no algorithm for producing split-phase outputs with a CSI presently exists. This paper's two major contributions aim to solve these problems. A simple preconditioning circuit is presented to provide the necessary dc current and store energy in a capacitor bank for use during load transients. A switching algorithm is written to produce balanced split-phase output voltages under a variety of unbalanced loading conditions. It is demonstrated using simulation and experimental results on a 400-W prototype that the proposed system is able to successfully generate balanced output voltages under unbalanced, inductive, nonlinear, and transient loading conditions, while equalizing switch utilization and minimizing output voltage ripple.   相似文献   

6.
An integrated current source converter system is presented based on an assembly of a thyristor-based current source inverter (CSI) in parallel with an insulated-gate-bipolar-transistor-based voltage source inverter (VSI) along with passive capacitors for high-power induction motor drive applications. The proposed configuration installs the VSI and the capacitor in such a way that both provide reactive power for generating the leading power factor required to accomplish natural commutations of the CSI. Based on the collaborative operation of the VSI and the parallel capacitor, the proposed system can be designed with a compromise between the VSI power capacity and the capacitor size. In addition, the VSI compensates harmonic current components from the thyristor-based CSI, while the capacitor filters out the voltage spikes during commutation of the thyristors. As a result, sinusoidal motor currents with improved harmonic spectrum can be drawn from this system. The proposed system utilizes the high-power capability of the thyristor-based CSI to supply high real power, while the VSI with easy controllability regulates the induction motor. Theoretical analyses based on mathematical modeling are presented in detail for the relationship between the inverter rating and the capacitor size, design considerations of the capacitor size, and the loss performances.   相似文献   

7.
VSS control of unity power factor   总被引:1,自引:0,他引:1  
Three-phase pulsewidth modulation (PWM) converters, specifically, voltage-source inverters (VSI), are possibly the most frequently used power converters for applications such as industrial motor control, robotics, air conditioning and ventilation, uninterruptible power supplies, electric vehicles, etc. With the introduction of standards on limiting harmonic pollution of electrical power distribution systems, three-phase PWM converters are being considered as prime candidates for interfacing high-power electronic equipment to power supply lines. In these applications, converters can provide input currents without distortion and with unity power factor. In this paper, the idea of using variable-structure system (VSS) control strategy of a boost rectifier in sliding mode is described. A new discrete-time control algorithm has been developed by combining VSS and Lyapunov design. It possesses all the good properties of the sliding mode and avoids the unnecessary discontinuity of the central input, thus eliminating chattering, which has been considered a serious obstacle to applications of VSS. A unified control approach for output DC voltage and input AC currents based on discrete-time sliding mode is developed. The reference tracking performance is demonstrated in terms of transient and steady-state characteristics by simulation and experimental results. The invariance and the robustness features of the proposed control method are verified by experiment in the presence of large uncertainty in parameters and external perturbations  相似文献   

8.
Simple topologies of PWM AC-AC converters   总被引:2,自引:0,他引:2  
This letter proposes a new family of simple topologies of PWM AC-AC converters with minimal switches. With extension from the basic DC-DC converters, a series of AC-AC converters such as buck, boost, buck-boost, Cuk, and isolated converters are obtained. By PWM duty ratio control, they become a "solid-state transformer" with a continuously variable turns ratio. All the proposed AC-AC converters in this paper employ only two switches. Compared to the existing circuits that use six switches or more, they can reduce cost and improve reliability. The operating principle and control method of the proposed topologies are presented. Analysis and simulation results are given using the Cuk AC-AC converter as an example. The analysis can be easily extended to other converters of the proposed family.  相似文献   

9.
This paper introduces a new multilevel converter topology that has many steps with fewer power electronic switches. The proposed circuit consists of series-connected submultilevel converters blocks. The optimal structures of this topology are investigated for various objectives, such as minimum number of switches and capacitors, and minimum standing voltage on switches for producing maximum output voltage steps. A new algorithm for determination of dc voltage sources’ magnitudes has also been presented. The proposed topology results in reduction of the number of switches, losses, installation area, and converter cost. The operation and performance of the proposed multilevel converter has been verified by the simulation and experimental results of a single-phase 53-level multilevel converter.   相似文献   

10.
This paper presents a new composite soft-switching configuration for single-phase inverters where power bridge leg modules are used. The presented configuration consists of only one inductor and one capacitor as well as two low-power-rated switches/diodes for full-bridge circuits. It can realize snubber functions and/or resonant zero-current switching at any load current for switches in power inverters with unipolar sinusoid pulse width modulation control. The idea presented here is that soft-switching processes at turn-on and turn-off for each active switch in inverters can be different. The detailed circuit operational processes, simulation waveforms, and experimental results are included  相似文献   

11.
A single-phase high-frequency transformer-isolated soft-switching single-stage ac-to-dc converter with low-line-current distortion is presented. The circuit configuration is obtained by integrating two discontinuous current mode (DCM) boost converters with a DCM full-bridge buck converter. The zero-voltage switching for the top switches is achieved automatically, whereas bottom switches are aided by zero-voltage transition circuits. The output voltage is regulated by duty-cycle control at constant switching frequency. The intervals of operation and steady-state analysis are presented. A systematic design procedure is presented with a 1-kW converter design example. PSPICE simulation and experimental results obtained from a 1-kW laboratory prototype are presented for a wide variation in line and load conditions.  相似文献   

12.
An accurate nonlinearity compensation technique for voltage source inverter (VSI) inverters is presented in this paper. Because of the nonlinearity introduced by the dead time, turn-on/off delay, snubber circuit and voltage drop across power devices, the output voltage of VSI inverters is distorted seriously in the low output voltage region. This distortion influences the output torque of IM motors for constant V/f drives. The nonlinearity of the inverter also causes 5th and 7th harmonic distortion in the line current when the distributed energy system operates in the grid-connected mode, i.e., when the distributed energy system is parallel to a large power system through the VSI inverter. Therefore, the exact compensation of this nonlinearity in the VSI inverter over the entire range of output voltage is desirable. In this paper, the nonlinearity of VSI inverter output voltage and the harmonic distortion in the line current are analyzed based on an open-loop system and a L-R load. By minimizing the harmonic component of the current in a d-axis and q-axis synchronous rotating reference frame, the exact compensation factor was obtained. Simulations and experimental results in the low frequency and low output voltage region are presented.  相似文献   

13.
The main idea developed in this paper is a novel biconverter structure to supply a doubly fed induction machine (DFIM). Two voltage source inverters (VSIs) feed the stator and rotor windings. The outputs of the two VSIs are combined electromechanically in the machine, and as a result, novel features can be obtained. For example, for high power drive applications, this configuration uses two inverters dimensioned for a half of the DFIM power. A new dual direct torque control is developed with flux model of DFIM. Two switching tables linked to VSI are defined for stator and rotor flux vector control. The satisfactory experimental and simulation results are shown, and they confirm good dynamic behavior in four quadrants of the speed-torque plane. Moreover, experimental results show the correct flux vector control behavior and speed tracking performances.  相似文献   

14.
This paper develops a new series resonant (current resonant) DC link inverter with a voltage clamped circuit. The proposed circuit has a fixed pulse frequency operation. The fixed pulse frequency at 20-50 kHz enables the system to work without audible noise, and to involve the much smaller-sized DC inductance and output capacitors compared with hard-switched current source inverters. The proposed circuit has a voltage clamped circuit which could control the voltage stress of the switches. In this paper, explanations of the new circuit configuration, the simulation, design considerations, and some experimental results are included  相似文献   

15.
Conventional zero-current-switching quasi-resonant power converters (ZCS-QRCs) suffer from the disadvantages of high switch current stress and variable switching frequency. This paper proposes the use of a “current-clamping circuit” to overcome these disadvantages. By incorporating such a circuit into the family of ZCS-QRCs, a new family of actively clamped ZCS-QRCs using insulated gate bipolar transistors (IGBTs) is derived. These power converters feature high (and constant) switching frequency and zero-current turn-off (without increased current stress), which are particularly useful for high-power applications where minority-carrier semiconductor devices (such as IGBTs and bipolar junction transistors) are used as power switches. The design criteria, simulation and experimental results are reported  相似文献   

16.
基于并联开关的低电压低功耗电流型CMOS电路设计   总被引:1,自引:1,他引:0  
该文提出了一种电流型CMOS电路的并联开关结构,使得电流型CMOS电路能在较低的电源电压下工作,因而可以实现电路的低功耗设计,同时在相同的电源电压下,采用并联开关结构的电路比相应的串联开关电路具有更快的速度,PSPICE模拟证明了采用并联开关结构设计的电路能在较低的电源电压下工作,并具有较小的电路延时。  相似文献   

17.
A novel zero voltage and zero current switching (ZVZCS) full bridge (FB) pulse width modulation (PWM) converter is proposed to improve the demerits of the previously presented ZVZCS-FB-PWM converters, such as use of lossy components or additional active switches. A simple auxiliary circuit which includes neither lossy components nor active switches provides ZVZCS conditions to primary switches, ZVS for leading-leg switches and ZCS for lagging-leg switches. Many advantages including simple circuit topology, high efficiency, and low cost make the new converter attractive for high power (>2 kW) applications. The operation, analysis, features and design considerations are illustrated and verified on a 2.5 kW, 100 kHz insulated gate bipolar transistor (IGBT) based experimental circuit  相似文献   

18.
Single-phase Z-source PWM AC-AC converters   总被引:1,自引:0,他引:1  
The letter proposes a new family of simple topologies of single-phase PWM ac-ac converters with a minimal number of switches: voltage-fed Z-source converter and current-fed Z-source converter. By PWM duty-ratio control, they become "solid-state transformers" with a continuously variable turns ratio. All the proposed ac-ac converters in this paper employ only two switches. Compared to the existing PWM ac-ac converter circuits, they have unique features: providing a larger range of output ac voltage with buck-boost, reversing or maintaining phase angle, reducing in-rush and harmonic current, and improving reliability. The operating principle and control method of the proposed topologies are presented. Analysis, simulation, and experimental results are given using the voltage-fed Z-source ac-ac converter as an example. The analysis can be easily extended to other converters of the proposed family. The proposed converters could be used in voltage regulation, power regulation, and so on.  相似文献   

19.
A novel zero-voltage and zero-current-switching (ZVZCS) full-bridge pulse-width-modulated (PWM) converter is proposed to improve the previously proposed ZVZCS full-bridge PWM converters. By employing a simple auxiliary circuit with neither lossy components nor active switches, soft-switching of the primary switches is achieved. The proposed converter has many advantages such as simple auxiliary circuit, high efficiency, low voltage stress of the rectifier diode and self-adjustment of the circulating current, which make the proposed converter attractive for the high voltage and high power applications. The principles of operation and design considerations are presented and verified on the 4 kW experimental converter operating at 80 kHz.  相似文献   

20.
Multilevel converters, like neutral-point-clamped inverters or multilevel choppers, are particularly attractive in high-power applications. Nevertheless, in these structures, all switches are confronted to commutation stresses caused by their turn-on and turn-off control. Furthermore, the methods to balance the capacitor voltages or to control the neutral point voltage are complex enough. In this paper, the authors propose new multilevel converters based on series connection of zero-current-source (ZCS) inverter cells and parallel connection of zero-voltage-source (ZVS) inverters. These dual structure associations give soft-switching operation for all switches and allow the use of semiconductors, normally destined for medium-power applications, in high-power converters (up to 1 MW). The authors consider the structure design for several topologies to achieve DC-DC or DC-AC converters. The simulation results validate the simplicity of phase control techniques and give out the principal features of different topologies  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号