首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Autonomously replicating sequence (ARS) elements are DNA sequences that promote extrachromosomal maintenance of plasmids in yeast. Mutations generated in vitro in the ARS1 region were examined for their effect on plasmid maintenance in a yeast centromeric plasmid. Our data show that mutations in the regions surrounding the ARS1 consensus sequence cause increases in the frequency of simple loss (1:0) events without affecting the rate of nondisjunction (2:0). Removal of the consensus sequence itself causes a drastic increase in the rate of simple loss. Sequences sensitive to mutagenesis were identified in each flanking region and differ with respect to their location and importance to ARS function. These results suggest that the role ARS1 plays in plasmid maintenance deals with the replication and/or localization of the plasmid in yeast.  相似文献   

2.
We have undertaken a search for autonomously replicating (ARSs) from Kluyveromyces lactis chromosomal DNA able to sustain plasmid replication in K. lactis and in Saccharomyces cerevisiae. The discovery of such sequences might be interesting for the comparison of ARSs from different sources and possibly useful for the construction of multivalent vectors. HindIII fragments from K. lactis chromosomal DNA were inserted in the YIp5 plasmid (lacking an origin of replication) and the resulting chimaeric plasmids were selected for the ability to transform S. cerevisiae. Four plasmids were identified and further analysed. Two contained the same 1.8 kb K. lactis fragment and transformed both K. lactis and S. cerevisiae with the same efficiency and stability, whereas the third transformed only S. cerevisiae and the fourth transformed K. lactis with a higher efficiency than S. cerevisiae. A detailed study was performed on the 1.8 kb fragment which exhibited ARS function in both yeasts. The fragment was subcloned using different restriction enzymes and Bal31 exonuclease. Subclones were tested for ARS function. ARS activities in the two yeasts were localized in the same 100 bp region. Sequencing demonstrated the presence in this region of the dodecanucleotide 5'ATTTATTGTTTT3' differing from the ARS core consensus of S. cerevisiae only by a T insertion. A similar nucleotide sequence is present in the putative replication origin of the 2 mu-like plasmid pKD1 which stably replicates in K. lactis. Homologies with ARSs from S. cerevisiae were also found in the regions flanking the above-mentioned dodecanucleotide.  相似文献   

3.
4.
Replication origins in Saccharomyces cerevisiae have been identified through the cloning of autonomous replication sequence (ARS) elements that allow the extrachromosomal maintenance of plasmid molecules. ARS activity requires a close match to an 11 bp consensus sequence and A + T-rich flanking DNA. ARS elements with a wide range of capacities for promoting plasmid maintenance have been described. We determined the ARS activity of plasmids with inserts consisting of repetitions of a 64 bp 100% A + T sequence that has sequence similarities to known ARS elements. An insert with approximately four repeats did not yield transformants, but inserts with either eight or eleven repeats did. The cooperative production of ARS activity did not require a contiguous arrangement since a plasmid containing two inserts of four repeats each, separated by about 1 kb, was functional. Our results show that a change from non-function to function can be accomplished by the cumulative action of individually inactive sequences. We conclude that the probability of replication initiation is too low with only four repeats to allow plasmid maintenance, but the overall probability is increased by further sequence iteration to provide origin activity. We suggest that chromosomes may contain stretches with dispersed, weak origin elements, each undetected by the conventional ARS assay, that in sum provide origin function.  相似文献   

5.
Two DNA fragments which have autonomously replicating sequence (ARS) activity in both Saccharomyces cerevisiae and Kluyveromyces lactis have been isolated from the K. lactis kl killer plasmid. One fragment (Kla1) is 700 base pairs (bp) in length and plasmids carrying it are mitotically unstable in both hosts. In K. lactis, this instability leads to colonies having a 'nibbled' phenotype when grown on selective media and appears to be the result of inefficient plasmid segregation. The other fragment (Kla2) is an artificial junction fragment of 1100 bp which was produced during the cloning procedure. Kla2 has been divided into two sub-fragments Kla2A and Kla2B which have, respectively, ARS activity in K. lactis and S. cerevisiae but not the other species. This indicates that these two closely related yeasts have different sequence requirements for ARS activity. Kla2B contains a perfect match to the S. cerevisiae ARS consensus but Kla2A does not. Both Kla2A and Kla1 share a 10 bp sequence as the sole region of homology between them. This sequence, 5'TCATAATATA3', is tentatively offered as defining the ARS consensus sequence for K. lactis.  相似文献   

6.
Yeast/E. coli shuttle vectors with multiple unique restriction sites   总被引:239,自引:0,他引:239  
Two yeast/E. coli shuttle vectors have been constructed. The two vectors, YEp351 and YEp352, have the following properties: (1) they can replicate autonomously in Saccharomyces cerevisiae and in E. coli; (2) they contain the beta-lactamase gene and confer ampicillin resistance to E. coli; (3) they contain the entire sequence of pUC18; (4) all ten restriction sites of the multiple cloning region of pUC18 including EcoRI, SacI, KpnI, SmaI, BamHI, XbaI, SalI, PstI, SphI and HindIII are unique in YEp352; these sites are also unique in YEp351 except for EcoRI and KpnI, which occur twice; (5) recombinant plasmids with DNA inserts in the multiple cloning region of YEp351 and YEp352 can be recognised by loss of beta-galactosidase function in appropriate E. coli hosts; (6) YEp351 and YEp352 contain the yeast LEU2 and URA3 genes, respectively, allowing for selection of these auxotrophic markers in yeast and E. coli; (7) both plasmids are retained with high frequency in yeast grown under non-selective conditions indicative of high plasmid copy number. The above properties make the shuttle vectors suitable for construction of yeast genomic libraries and for cloning of DNA fragments defined by a large number of different restriction sites. The two vectors have been further modified by deletion of the sequences necessary for autonomous replication in yeast. The derivative plasmids YIp351 and YIp352 can therefore be used to integrate specific sequences into yeast chromosomal DNA.  相似文献   

7.
In this report the effects of phosphoglycerate kinase (PGK) overproduction on the physiology and plasmid stability in baker's yeast Saccharomyces cerevisiae containing the PGK1 gene on an episomal plasmid are described. This examination reveals that there is a preferred intracellular level for this enzyme, amounting to 10-15% of the total soluble protein. Strains containing the plasmid and the host strain were grown in non-selective batch cultures and continuous culture, under different growth conditions. Plasmid-containing yeast strains stabilize the copy number of the episomal plasmid at a level at which the PGK concentration is about 12%. This stabilization is due to an equilibrium between normal plasmid loss and selective pressure because of advantages resulting from the increased amount of PGK under glucose-limited conditions. During respiro-fermentative growth, PGK-overproducing cells showed an increased respiration rate and decreased fermentative activity, compared to the host strain. The PGK1 gene can be applied as a direct positive selection marker to obtain a high episomal plasmid stability during growth on glucose. The results are consistent with previously reported data on the physiology and gene stability of PGK-overproducing yeast cells that contain multiple copies of the PGK1 gene integrated into the genome.  相似文献   

8.
We have characterized a defect in the mitotic transmission of plasmid minichromosomes in yeast strains deleted for the more highly expressed pair of histone H3 and H4 genes. Several observations indicate that an impairment in DNA replication contributes to the decrease in minichromosome stability. First, the maintenance of ARS plasmids that lack centromeres was also defective. Second, the addition of multiple ARS elements suppressed the defect in plasmid maintenance. Third, a synergistic increase in plasmid loss rate was seen when a plasmid containing an inefficient mutated ARS was tested in a strain deleted for histone genes, implying an interaction between ARS activity and the histone gene deletion. These results support the existence of a histone-dependent step in the initiation of DNA replication. We find that the stability of native chromosomes is not affected in strains deleted for histone genes. We propose that reduced histone H3 and H4 protein decreases the efficiency of initiation at ARS elements on plasmids and chromosomes, but that the presence of multiple origins on chromosomes compensates for the reduced efficiency. We find that decreased minichromosome stability is suppressed by increases in strain ploidy. The greater stability due to ploidy increases is not due to a relative increase in the expression of histone genes. We discuss models for the effect of strain ploidy on minichromosome maintenance.  相似文献   

9.
10.
We have developed plasmid vectors to enable selection of diploids from mating reactions between haploid strains that lack compatible recessive genetic markers. The plasmids bear one of five different dominant selectable markers, kanMX4, hphMX4, natMX4, patMX3 or ZEO, a yeast origin of replication, and the URA3 gene. Diploids can be selected from mating reactions between haploids transformed with plasmids expressing different dominant markers, by using a combination of drugs that select for both markers. Following non-selective growth, diploids that subsequently become cured of the plasmids can be directly selected on 5-FOA, for ura3 auxotrophs, or identified by replica-plating onto appropriate selective media.  相似文献   

11.
Most strains of Saccharomyces cerevisiae, Zygosaccharomyces bailii and Zygosaccharomyces rouxii have been found to contain plasmid DNA. The sequences of the plasmids from these three yeasts are known to be different. We have used two primers within the plasmid from each yeast species in a multiplex polymerase chain reaction (PCR) to discriminate between these three yeasts. The primers were designed to give easily distinguishable fragment sizes when run on a simple agarose gel. Due to the sensitivity of PCR, crude cells can be used with no need to isolate DNA. The method is rapid when compared with current methods.  相似文献   

12.
13.
We describe a set of replicative, integrative and single-stranded shuttle vectors constructed from the pUC19 plasmid that we use routinely in our experiments. They bear a yeast selectable marker: URA3, TRP1 or LEU2. Replicative vectors carrying different yeast replication origins have been constructed in order to have plasmids based on the same construction with a high or low copy number per cell and with different mitotic stabilities. All the vectors are small in size, provide a high yield in Escherichia coli and efficiently transform Saccharomyces cerevisiae. These plasmids have many of the unique sites of the pUC19 multicloning region and many of them allow for the screening of plasmids with an insert by alpha-complementation. The nucleotide sequence of each of them is completely known.  相似文献   

14.
In order to reduce the number of classical DNA manipulation and ligation steps in the generation of yeast expression plasmids, a series of vectors is described which facilitate the assembly of such plasmids by the more efficient ‘recombination in vivo’ technique. Two sets of vectors were developed. The first set, called ‘expression vectors’, contains an expression cassette with a yeast promoter and the PGK terminator separated by a polylinker, and an Escherichia coli replicon. Subcloning in these vectors of a DNA fragment generates a ‘transfer vector’ which is compatible with the second set of E. coli–yeast shuttle vectors. This set of ‘recombination vectors’ contains a cassette for a functional copy of a gene complementing a host strain auxotrophy or a bacterial gene conferring an antibiotic resistance to the plasmid-bearing host. Plasmid copy numbers can be modulated through the use of URA3 or URA3-d as the selective marker together with an ARS/CEN and the 2 μm replicon. Integration of the cloned DNAs into the yeast linearized replicative vectors occurs by recombination between homologous flanking sequences during transformation in yeast or E. coli. All the vectors contain the origin of replication of phage f1 and allow the generation of single-stranded DNA in E. coli for sequencing or site-directed mutagenesis. The sequence presented (Figure 1a) has been entered in the EMBL data library under Accession Number Z48747.  相似文献   

15.
16.
Previous attempts is isolate autonomously replicating sequences (ars) from the dimorphic yeast Yarrowia lipolytica have been unsuccessful. We isolated a Fil- mutant unable to produce hyphae and growing only in a yeast form to facilitate ars isolation. This mutant was transformed with a Y. lipolytica DNA bank and several unstable clones were obtained. Extrachromosomal plasmids were evidenced in yeast, recovered in Escherichia coli and characterized by restriction mapping. They were able to retransform Fil- and Fil+ yeast strains at high frequency and transformants displayed a slightly unstable phenotype. The detailed analysis of the plasmids showed that only two different ars sequences had been isolated, each of them corresponding to a unique sequence in the Y. lipolytica genome. We concluded that functional ars sequences that can be cloned on plasmids are rare in this yeast.  相似文献   

17.
The industrially important yeast Candida utilis is widely used in production of food and medical materials, but its host-vector system has not been well developed. We screened for compact and efficient ARSs to construct practically useful vectors. The C. utilis strain AHU3053 was found to be efficiently transformed by the conventional lithium acetate method and was used as the host. The C. utilis IAM4264 genomic library was constructed by inserting the partial Sau3AI digests in pRI51, which has a kanMX gene expressible in C. utilis. By examining 98 C. utilis G418-resistant transformants, five plasmids had the highest ARS activity. By trimming of the inserts, the 1490 and 552 bp fragments with transformation activity of over 10(3)/microg DNA were obtained from ARS3 and ARS4, respectively. Although several sequences identical to S. cerevisiae ARS consensus sequences (ACSs) were found in ARS3 and ARS4, our deletion analysis indicated that these were not essential for the activity. Because the minimal functional ARS fragment was also several-fold larger than that of S. cerevisiae, the C. utilis ARSs have some unique characteristics resembling the Sz. pombe ARSs. These ARSs were functional in other C. utilis strains tested and useful for constructing practical vectors.  相似文献   

18.
A distributive model has been constructed to describe the maintenance of the native 2 μm and 2 μm-based plasmids in the yeast Saccharomyces cerevisiae. This model includes elements which represent the influence of selection, segregation, replication and amplification on plasmid stability. A computer program has been written in TURBO PASCAL to implement the model and a number of simulation experiments have been carried out. These simulations permitted the choice of a form of the model which is compatible with the available experimental evidence. The form chosen involves an amplification system in which the RAF gene product binds to the Rep1/Rep2 dimer to prevent the latter acting to repress the activity of the FLP gene. At the same time an upper limit (or ‘ceiling’) was imposed on the number of plasmid molecules able to replicate. Maternal bias was accommodated by ‘tagging’ a small proportion of molecules for inheritance by the mother nucleus and these tags being removed (or ‘cleared’) by the Rep1/Rep2 dimers. This final form of the model makes specific predictions about the stability of 2 μm and YEp plasmids in yeast populations and about the distribution of plasmid copy number between cells in such populations. The predictions on stability have been subjected to experimental test and results provide good support for the model.  相似文献   

19.
The linear plasmids frequently found in plants and filamentous fungi are associated with mitochondria or chloroplasts. In contrast, all the linear plasmids known in yeasts are cytoplasmic elements. From a strain of the yeast Pichia kluyveri, we have isolated a new linear plasmid, pPK2, which was found to be associated with mitochondria. This 7·1 kilobase pairs‐long DNA contained only two genes, which code for DNA and RNA polymerases, as judged from their nucleotide sequences translated by a mitochondrial genetic code. When we examined several recently isolated yeast plasmids for their subcellular localization, we found that two linear plasmids, pPH1 from Pichia heedii, as well as pPK1 from another strain of P. kluyveri, were also localized in mitochondria. These plasmids are the first examples of mitochondria‐associated linear plasmids in yeast. All other linear plasmids we examined were of cytoplasmic origin. Whilst the cytoplasmic type linear plasmids were efficiently eliminated by ultraviolet irradiation of host cells, the mitochondria‐associated plasmids were highly resistant. The mitochondrial pPK2 plasmid was rapidly lost by treatment of the host cells with ethidum bromide. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

20.
We have investigated the significance of the chromosomal replication origin, ARS1, during the entire life cycle of yeast. This was done by substituting the chromosomal copy with a series of ars1 deletion mutants. It was shown that the ARS1 replication origin is not essential for mitotic or premeiotic DNA replication since no effect on growth, chromosomal loss rate and spore viability was observed in the ars1 mutant strains. We conclude that replication origins are abundantly, present in the yeast genome and that the removal of a single replication origin is compensated for by replication forks emanating from neighbouring origins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号