共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
以配制的酸性嫩黄G染料废水为研究对象,考察O3、O3/H2O2体系对去除染料废水中的COD.和色度,提高可生化性的效果,分析pH值、初始污染物浓度、H2O2投加量等各种因素对O3氧化染料废水的影响.试验结果表明:臭氧氧化对COD.去除率达55.1%,对色度的去除率接近100%,B/C由原水的0.08上升到03;臭氧化酸... 相似文献
3.
S Ji-min L Xue-yan C Zhong-lin G Xiao-hong Z Xue X Zhen-zhen 《Water science and technology》2008,57(12):2043-2050
Tannic acid, being polyhydroxyl, is a macromolecule natural organic matter. The efficiency and mechanism of degradation of tannic acid by O3 and O3/H2O2 was studied. The results showed that the addition of H2O2 had no obvious improvement on the ozonation efficiency of tannin. It was observed that the addition of H2O2 decreased the removal efficiency of TOC by 10%. The relative intensity of .OH generated in the O3-H2O2 system was detected by electronic spin resonance (ESR) and it was found that tannin consumed the .OH radicals, which may be associated with the polyhydroxyl structure of tannin. Derived with PFBBr and analysed by GC-ECD, the by-products of tannin ozonation were found to be aldehydes such as acetaldehyde, glyoxal and methyl glyoxal. Analysis with an ion chromatogram showed that the final products of tannin were oxalic acid, ketomalonic acid and oxalic acid, which consisted of 35% of TOC in both systems. 相似文献
4.
为探寻污水厂二级出水深度处理方法,以阜新市某污水处理公司二级出水为研究对象,进行H2O2与沸石联用去除水中COD、氨氮的研究。结果表明:在二氧化锰的催化作用下,pH值为7时,H2O2和沸石的投加量分别为1.5mL和2g,二级出水的COD从138.24mg/L降到52.76mg/L,去除率达到75.36%,NH3-N从20mg/L降到5mg/L,去除率为74.59%,出水有机物和氨氮含量达到国家相关出水标准。 相似文献
5.
开展了H2O2/O3灭活隐孢子虫(Cryptosporidium parvum)的研究。考察了H2O2和O3投加比例、过氧化氢作用效果、无机金属离子等因素的影响。结果表明,H2O2/O3协同技术具有最佳的灭活效果,H2O2的投加不仅降低了药剂(O3)的初始浓度(投量2.0mg/L),而且缩短了灭活时间(7.0 min),达到理想的灭活效果(灭活率99.0%以上)时,H2O2/O3摩尔比为0.8;同时考察了水中常见离子对H2O2/O3灭活效果的影响,低浓度的Ca2+,Mg2+和Cu2+等二价金属离子均对灭活起到一定促进作用,一价离子Na+对灭活无明显的作用,而NO-3,HCO-3和Cl-在一定范围内抑制了H2O2/O3对隐孢子虫的灭活。 相似文献
6.
Benzothiazole (BT) is a toxic and poorly biodegradable contaminant, usually found in wastewater from rubber related applications. This compound could be effectively eliminated using advanced treatment processes. This paper compares experimental results on detoxification systems based on ozone oxidation, activated carbon adsorption, and simultaneous adsorption-oxidation using ozone in the presence of activated carbon. The effect of pH (2-11), and the presence of radical scavengers (tert-butyl alcohol and sodium carbonate) on process rates and removal efficiencies are assessed at laboratory scale. The experimental system consisted of a 1 L differential circular flow reactor and an ozone generator rated at 5 g O3/h. Results show that ozone oxidation combined with activated carbon adsorption increases the overall BT oxidation rate with respect to the ozonation process and activated carbon adsorption. In the presence of free radical scavenger, only a 44% reduction in BT removal rate is observed in the simultaneous treatment, as compared with 72% when ozonation treatment is used, suggesting that BT oxidation reactions mainly take place on the activated carbon surface. 相似文献
7.
E U Cokgor O Karahan I Arslan-Alaton H Saruhan D Orhon 《Water science and technology》2005,52(10-11):89-96
Chemical pre-treatment of synthetic Procaine Penicillin G (PPG) effluent with ozone (applied dose = 1440 mg/h; treatment duration = 60 min) at pH = 7 was investigated. Successive biological treatability studies were performed with raw, ozonated penicillin formulation effluent and synthetic readily biodegradable substrate as simulated domestic wastewater. The PPG effluent additions were adjusted to constitute approximately 30% of the total COD in the reactor. Ozonation of PPG effluent resulted in practically complete removal of the parent pollutant accompanied by 40% COD abatement. Speaking for the raw PPG effluent, prolonged acclimation periods were necessary to obtain significant COD removal efficiencies. Batch activated sludge treatment experiments and respirometric studies have demonstrated that the selection of true retention time is extremely crucial for having high amount of slowly hydrolysable substrate or complex wastewater, like pharmaceutical effluent. The effect of ozonation time on biological treatability performance of PPG has been evaluated in the study. Pre-ozonation of PPG effluent did not improve its ultimate biodegradability. 相似文献
8.
研究比较了UV/H2O2和UV/TiO2/H2O2对水中微量硝基苯的降解效果,并考察了水中常见HCO-3和腐殖酸对硝基苯降解的影响.结果表明,薄膜状TiO2的存在对UV/H2O2降解硝基苯有显著的促进作用,在最佳H2O2投加量2.1 mg/L时,UV/TiO2/H2O2的反应速率常数比UV/H2O2高32.8%;2 min内UV/TiO2/H2O2对硝基苯的去除率达到80%以上.HCO-3和腐殖酸对硝基苯降解有很强的抑制作用,HCO-3和腐殖酸浓度分别为2 mmol/L和3.2 mg/L时,UV/TiO2/H2O2对硝基苯的反应速率常数分别下降84.6%和92.2%. 相似文献
9.
Photodegradation of organic pesticides in industrial wastewater was examined in a UV/H2O2/air system. An experimentally determined optimal amount of hydrogen peroxide (0.008% v/v) indicates that hydrogen peroxide concentration controlled the efficiency of photodegradation. Pre-treatment operations such as sedimentation, filtration and coagulation were used to obtain better efficiency of pesticide removal and to cut down on irradiation time. Finally, scale-up experiments in the air-sparged hydrocyclone (ASH) reactor were carried out. After 5 min irradiation of 100 dm3 industrial wastewater almost all pesticides were destroyed. Thus the ASH reactor proved to be an effective contactor for carrying out photochemical reactions. 相似文献
10.
为了开发高效低成本、达到回用水质标准的污水处理工艺,本试验采用H2O2、Fenton试剂与活性炭联用对CODCr进行去除的对比试验研究。结果表明:在室温下200 mL水样,当pH为3,震荡强度为150 rpm时,Fenton试剂-活性炭联用与H2O2-活性炭相比,活性炭用量少200 mg,时间缩短10 h,CODCr去除率高17.6%。试验揭示了Fenton试剂-活性炭联用的反应机理:Fe2+与活性炭共同催化分解H2O2生成大量.OH,能快速氧化降解有机物,使CODCr浓度迅速降低。从工程应用角度和技术经济方面考虑,Fenton试剂-活性炭联用的pH值在5~7适宜;且处理成本更低。Fenton试剂-活性炭联用是处理二级出水CODCr高效、低耗的方法,值得进一步研究和推广应用。 相似文献
11.
C S Zalazar M D Labas M E Lovato R J Brandi A E Cassano 《Water science and technology》2007,55(12):31-35
The intrinsic reaction kinetics of the decomposition of dichloroacetic acid (DCA) using UV/H2O2 was studied. A complete mathematical model, including the effect of the absorbed radiation intensities and H2O2 concentration was developed. The results of the kinetic measurements were analysed using a complete mathematical model of the experimental device that was used for the laboratory operation (a differential reactor inside a recycle). In this way it was expected to obtain intrinsic kinetic parameters. Experimental data agree well with theoretical predictions esmploying just two kinetic parameters derived from the proposed reaction mechanism. 相似文献
12.
Water and wastewater effluents contain a vast range of pharmaceutical chemicals. The present study aims to determine the potential of the advanced oxidation technology UV/H(2)O(2)/O(3) and its sub-processes (i.e. UV, UV/H(2)O(2), UV/O(3), O(3) and H(2)O(2)/O(3)) for the degradation of the antibiotics ciprofloxacin (CIP) and trimethoprim (TMP), and the antineoplastic drug cyclophosphamide (CPD) from water. Creating AOP conditions improved in most cases the degradation rate of the target compounds (compared with O(3) and UV alone). H(2)O(2) concentration was found to be an important parameter in the UV/H(2)O(2) and H(2)O(2)/O(3) sub-processes, acting as (?)OH initiator as well as (?)OH scavenger. Out of the examined processes, O(3) had the highest degradation rate for TMP and H(2)O(2)/O(3) showed highest degradation rate for CIP and CPD. The electrical energy consumption for both CIP and CPD, as calculated using the E(EO) parameter, was in the following order: UV > UV/O(3) > UV/H(2)O(2)/O(3) > O(3) > H(2)O(2)/O(3). Whereas for TMP O(3) was shown to be the most electrical energy efficient. Twelve degradation byproducts were identified following direct UV photolysis of CIP. 相似文献
13.
Methyl tert-butylether (MTBE) used as fuel oxygenate poses problems for water suppliers since it is persistent in the aquatic environment and the removal efficiency by conventional water treatment methods (aeration or activated carbon filtration) is rather low. Substitution by other ether compounds such as ethyl tert-butylether (ETBE), tert-amylmethylether (TAME) or di-isopropylether (DIPE) is discussed, however, their environmental behaviour is similar to that of MTBE. Experiments investigating the elimination efficiency of AOP were carried out in tap water and water from Lake Constance. The elimination efficiency for all treatment processes was found to follow the order: MTBE < TAME approximately equal ETBE < DIPE For all compounds under investigation, neither pure ozonation nor UV irradiation yield a considerable concentration decline. Only the formation of highly reactive OH radicals shows a potential for removing the ethers from water. Therefore the addition of H2O2 in equimolar ratio prior to ozone admixing proved to be quite efficient. The application of combined UV/H2O2 showed good results in all cases; the best concentration decline was achieved with UV/ozone. The rate of elimination of the three substitutes for MTBE (ETBE, TAME and DIPE) is higher in all processes; nevertheless, no complete removal could be achieved. Therefore, from the point of view of water suppliers, the use of other ethers as substitute for MTBE is posing the same problems as MTBE. 相似文献
14.
Due to rising concern regarding the presence of endocrine-disrupting chemicals (EDCs) in surface water and groundwater throughout the United States, Asia and Europe, treatment of these chemicals in drinking water and wastewater to protect human health and the environment is an area of great interest. Many conventional treatment schemes are relatively ineffective in removing EDCs from water and wastewater. This is concerning because these chemicals are biologically active at very low concentrations and effects of mixtures are relatively unknown. 17-alpha-oestradiol (E2) and 17-beta-ethinyl-oestradiol (EE2), suspected EDCs, were degraded significantly by the UV/H2O2 AOP. The UV/H2O2 processes using either low or medium pressure lamps were degraded EDCs by between 80 and 99.3% at a 15 ppm H2O2 concentration and a UV dose of 1,000 mJ/cm2. Significantly greater removal was noted when the removal was based on total oestrogenic activity using a yeast oestrogen screen (YES) assay. These data indicated that a dose of less than 200 mJ/cm2 completely removed oestrogenic activity in lab water. Values for natural waters were slightly higher. A steady state model was developed to determine EDC destruction efficiency in waters of differing quality. The model effectively predicted destruction in water, where concentrations of all scavenging species were known. Based on these results it was concluded than complete destruction of oestrogenic activity was possible under practical advanced oxidation conditions for a variety of water qualities. 相似文献
15.
16.
Classification of the degradability of 30 pharmaceuticals in water with ozone, UV and H2O2. 总被引:1,自引:0,他引:1
I H Kim H Tanaka T Iwasaki T Takubo T Morioka Y Kato 《Water science and technology》2008,57(2):195-200
Experiments were conducted to assess the degradability of 30 PPCPs, selected on the basis of consumption and environmental relevance, by O3 process, UV process and AOPs consisting of UV/ H2O2, O3/UV and O3/H2O2. A batch reactor with volume of 22L of water including the PPCPs was used. For UV process, combination of UV and H2O2 or O3 that can generate OH radicals was capable of degrading the PPCPs faster than UV radiation alone. On the other hand, O3 process and O3-based/UV-based AOPs could remove a variety of the PPCPs effectively, while some PPCPs such as 2-QCA, DEET and cyclophosphamide showed a relatively low degradability compared with the other PPCPs. However, further evaluation on formation of intermediate products resulting from the degradation of the parent PPCPs will be needed because DOC concentration was not decreased with lowered concentrations of the PPCPs. 相似文献
17.
Treatment of nitrogen and phosphorus in highly concentrated effluent in SBR and SBBR processes. 总被引:2,自引:0,他引:2
Various sludge treatment processes produced supernatant with high ammonia concentration from 500 to 2,000 mgN/L and generally high phosphate concentration. Conversion of ammonia into nitrite via partial nitrification has proven to be an economic way, reducing oxygen and external COD requirements during the nitrification/denitrification process. Two processes with biomass retention are studied simultaneously: the sequencing batch reactor (SBR) and the sequencing batch biofilm reactor (SBBR). At a temperature of 30 degrees C, the inhibition of nitrite-oxidizing bacteria due to high ammonia concentration has been studied in order to obtain a stable nitrite accumulation. This work has confirmed the effect of pH and dissolved oxygen on nitrite accumulation performance. During a two month starting period, both processes led to nitrite accumulation without nitrate production when pH was maintained above 7.5. From a 500 mgN/L effluent, the performance of the SBR, and the SBBR, reached respectively about 0.95gN-NO2-/gN-NH4+, and 0.4gN-NO2-/gN-NH4+. The SBBR appears to be more stable facing disturbances in dissolved oxygen conditions. Finally, the maximal phosphate removal rates obtained in the SBR reached 90%, and 70% in the SBBR, depending on ammonium accumulation in the reactor. Ammonium phosphate precipitation is likely to occur, as was suggested by crystals observation in the reactor. 相似文献
18.
The photodegradation of a carbamate insecticide, Carbofuran (CBF), which has been recognised as a potential endocrine disrupting chemical, was studied via different wastewater treatment processes. This study has shown the efficiency of advanced oxidation process, AOP (UV/O3) than those of the direct UV photolysis and ozonation process, by completely removing 0.2 mM CBF and achieving 24% mineralisation within 30min. The initial decay of CBF by UV/O3 accelerated from 0.05 to 0.16 min(-1) as the initial pH increasing from 3.0 to 11.3. The pH-dependency of CBF has also been shown in both ozonation and UV/O3 process. A linear relationship could be found for the latter process in all pH, while for the former process, two stages of reactions (steady and accelerating) were found in the acidic and alkaline pH condition, respectively. 相似文献
19.
20.
Phosphorus chemicals control key aspects of eutrophication and other environmental process. Hypophosphite (HP) originating from manmade and natural sources was evidenced as present in the environment and was investigated rarely. Recently, iron oxide has been used as a catalyst for oxidising organic contaminants with hydrogen peroxide (i.e. heterogeneous Fenton-like reaction). This study focused mainly on the oxidation of 1.0 mM HP by hydrogen peroxide in the presence of a novel iron oxide catalyst (B1 catalyst) which was prepared through a fluidised-bed Fenton reactor (FBR-Fenton). The background experiments including the oxidation experiment of HP by air only, by H2O2 only and adsorption of HP by B1 catalyst were first elucidated. It was found that HP could not be oxidised at all by air and H2O2 at pH 2.5-12 in 24 hours. On the other hand, it could be adsorbed by B1 catalyst with 89.8% removal at pH 2.5 in 5 hours and complete desorption at pH 11.0. Then, we investigated the effects of pH and Fe leaching from the catalyst on the oxidative efficiency of HP. We found that although the removal rate of HP at pH 2.5 is faster than that at pH 4.0, B1 catalyst has a higher HP oxidation efficiency at pH 4.0 than that at pH 2.5. We conclude that it is a major heterogeneous catalytic oxidation by our novel iron oxide catalyst to oxidise HP at pH 4.0. Also, B1 could be a useful and potential catalyst for the treatment of HP wastewater. 相似文献