首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A newly designed sample-and-hold(S/H) integrated circuit based on the 1.5 micron N-well CMOS technology for 8-bit high-speed analog to digital converter is described. It can realize the 40-MHz sampling rate and 8-bit resolution. The good performance of S/H circuit benefits from the use of a newly designed regulated cascode operator amplifier, which has a DC gain of 140-dB, unity-gain bandwidth of 407-MHz, phase margin of 53 degree and power consumption of 90mW. It is superior to the operator amplifier of 60-dB, 107-MHz, 13 degree, and 33mW respectively, which is used in the similar S/H circuit based on the 0. 8 micron technology and designed by Michio Yotsuyanagi.  相似文献   

2.
A fully-differential switched-capacitor sample-and-hold (S/H) circuit used in a 10-bit 50-MS/s pipeline analog-to-digital converter (ADC) was designed and fabricated using a 0.35-μm CMOS process. Capacitor fliparound architecture was used in the S/H circuit to lower the power consumption. In addition, a gain-boosted operational transconductance amplifier (OTA) was designed with a DC gain of 94 dB and a unit gain bandwidth of 460 MHz at a phase margin of 63 degree, which matches the S/H circuit. A novel double-side bootstrapped switch was used, improving the precision of the whole circuit. The measured results have shown that the S/H circuit reaches a spurious free dynamic range (SFDR) of 67 dB and a signal-to-noise ratio (SNR) of 62.1 dB for a 2.5 MHz input signal with 50 MS/s sampling rate. The 0.12 mm2 S/H circuit operates from a 3.3 V supply and consumes 13.6 mW.  相似文献   

3.
The authors describe an 8-bit, extremely low-power, flash A/D converter LSI for video-frequency image signal processing. This converter uses a shallow-groove-isolated bipolar VLSI technology. It consumes only 150 mW, which is half the amount of the lowest power consumption so far reported. This low level of power consumption is achieved by the use of a comparator circuit, which is newly designed. This converter can digitize video signals of up to 10 MHz at a conversion rate of 30 MHz. A differential gain (DG) error of 1% and a differential phase (DP) error of less than 0.5/spl deg/ were observed.  相似文献   

4.
A 14-b, 100-MS/s CMOS DAC designed for spectral performance   总被引:2,自引:0,他引:2  
A 14-bit, 100-MS/s CMOS digital-to-analog converter (DAC) designed for spectral performance corresponding more closely to the 14-bit specification than current implementations is presented. This DAC utilizes a nonlinearity-reducing output stage to achieve low output harmonic distortion. The output stage implements a return-to-zero (RZ) action, which tracks the DAC once it has settled and then returns to zero. This RZ circuit is designed so that the resulting RZ waveform exhibits high dynamic linearity. It also avoids the use of a hold capacitor and output buffer as in conventional track/hold circuits. At 60 MS/s, DAC spurious-free dynamic range is 80 dB for 5.1-MHz input signals and is down only to 75 dB for 25.5-MHz input signals. The chip is implemented in a 0.8-μm CMOS process, occupies 3.69×3.91 mm 2 of die area, and consumes 750 mW at 5-V power supply and 100-MS/s clock speed  相似文献   

5.
魏子辉  黄水龙  单强 《电子学报》2017,45(12):2890-2895
为了保证模数转换器转换速度和精度,本文基于0.18微米工艺,设计实现了一款应用于12-bit 40-MS/s流水线ADC前端的采样保持电路.所采用的环型结构运放,可以简化设计、且占用面积小;同时,采用绝缘体上硅工艺,可以消除栅压自举开关中开关管的衬偏效应,改善开关的线性度,提高采样保持电路的性能.采样保持电路面积是0.023平方毫米.测试结果表明:在1.5V供电电压下,采样保持电路功耗是3.5mW;在1MHz输入频率、40MHz采样频率下,该采样保持电路无杂散动态范围可以达到76.85dB,满足12-bit 40-MS/s流水线模数转换器应用需求.  相似文献   

6.
7.
设计了一种高性能的采样保持(S/H)电路,在1.8V的电源电压下,其性能满足12位精度、100MS/s转换速率的ADC的要求。设计中采用了一种新型的自举采样开关,提高了S/H电路的可靠性和线性度;对于高增益大带宽的运算跨导放大器OTA的带宽设计,在分析了主运放和辅助运放在带宽和相位裕度等方面的关系的基础上,提出了新的设计方法。仿真结果表明:S/H电路的差动输出摆幅达到了2V;对于输入为49MHz的正弦波,测得其信号噪声失真比达到了82dB,满足12位ADC的要求;整个电路的功耗约为20mW。  相似文献   

8.
A comparator-based switched-capacitor circuit (CBSC) technique is presented for the design of analog and mixed-signal circuits in scaled CMOS technologies. The technique involves replacing the operational amplifier in a standard switched-capacitor circuit with a comparator and a current source. During charge transfer, the comparator detects the virtual ground condition in place of the opamp which normally forces the virtual ground condition. A prototype 1.5-bit/stage 10-bit 7.9-MS/s pipeline ADC was designed using the comparator-based switched-capacitor technique. The prototype ADC was implemented in 0.18-mum CMOS. It achieves an ENOB of 8.6 bits for a 3.8-MHz input signal and dissipates 2.5 mW  相似文献   

9.
A fully integrated BiCMOS continuous-time filter for video signal processing applications is presented. It incorporates an input clamping circuit, a third-order equalizer, a fifth-order elliptic filter with sinx/x correction, and a 75-Ω driver. The architectures of the input and output amplifiers as well as the filter and the equalizer are chosen based on the extensive study of circuit structures and Monte Carlo simulation to meet the linearity requirement for the broadcast-quality video system. The complete chip achieves a low-pass filter response with a 5.5-MHz cutoff frequency (fcc), 0.3-dB passband ripple, 20-ns group delay variation up to 0.9 fc, and 43-dB attenuation at 1.45 fc. With a nominal 2-Vpp signal at the output, measured results show 0.2% differential gain, 0.38° differential phase, and 1.7-mV rms noise demonstrating 10-bit linearity in a 1.5-μm 4-GHz BiCMOS process technology. The filter active area is 8 mm2 and it dissipates 350 mW in a single 5-V power supply  相似文献   

10.
An 8-bit fully decoded RAM test circuit has been designed and fabricated using enhancement-mode GaAs-MESFET's with the LPFL circuit approach. Correct operation of the circuit has been observed for a supply voltage varying from 3.5 to 7 V. An access time of 0.6 ns was measured for a total power consumption of 85 mW under nominal operating conditions. This circuit was used to develop and validate both a design strategy and computer-aided design (CAD) tools oriented towards cache or buffer memories of realistic complexity. It is shown that a performance-optimized 1-kbit RAM exhibiting an access time of 1.1 ns for a power dissipation of 850 mW would be feasible with the present fabrication technology.  相似文献   

11.
An 8-bit fully decoded RAM test circuit has been designed and fabricated using enhancement-mode GaAs-MESFET's with the LPFL circuit approach. Correct operation of the circuit has been observed for a supply voltage varying from 3.5 to 7 v. An access time of 0.6 ns was measured for a total power consumption of 85 mW under nominal operating conditions. This circuit was used to develop and validate both a design strategy and computer-aided design (CAD) tools oriented towards cache or buffer memories of realistic complexity. It is shown that a performance-optimized 1-kbit RAM exhibiting an access time of 1.1 ns for a power dissipation of 850 mW would be feasible with the present fabrication technology.  相似文献   

12.
A 9-bit 1.0-V pipelined analog-to-digital converter has been designed using the switched-opamp technique. The developed low-voltage circuit blocks are a multiplying analog-to-digital converter (MADC), an improved common-mode feedback circuit for a switched opamp, and a fully differential comparator. The input signal for the converter is brought in using a novel passive interface circuit. The prototype chip, implemented in a 0.5-μm CMOS technology, has differential nonlinearity and integral nonlinearity of 0.6 and 0.9 LSB, respectively, and achieves 50.0-dB SNDR at 5-MHz clock rate. As the supply voltage is raised to 1.5 V, the clock frequency can be increased to 14 MHz. The power consumption from a 1.0-V supply is 1.6 mW  相似文献   

13.
This paper presents a new low-power high-speed fully static CMOS variable-time adder. The VLSI implementation proposed here is based on the statistical carry look-ahead addition technique. The new circuit takes advantage of an innovative way of using a composition of propagate signals and of appropriately designed overlapped execution modules to reduce average addition time, layout area, and power dissipation. A 56-bit adder designed as described here and realized using AMS 0.35-/spl mu/m CMOS standard cells at 3.3V supply voltage shows an average addition time of about 4.3 ns and a maximum power dissipation of only 50 mW at 200-MHz repetitive frequency using a silicon area of less than 0.23 mm/sup 2/.  相似文献   

14.
A 10-bit 20-MHz A/D converter for high-quality video systems such as high-definition television, video tape recorders for business use, and digital video cameras is described. This LSI circuit uses a standard two-step parallel architecture, includes automatic gain adjustment and digital two-bit error correction, and has a sample-and-hold circuit on the chip. It is fabricated by a 4.5-GHz fT. 3-μm-rule standard bipolar technology. Its die size is 25 mm2 , and its power consumption is 900 mW, which is about half of the lowest values reported to date. The converter can digitize video signals of up to 8.5 MHz at a conversion frequency of 20 MHz. The error in differential gain is 0.5 percent, and the error in differential phase is 0.5°  相似文献   

15.
A 14-bit current-steering DAC utilizing parallel current memories operating as a deglitcher is presented. The high linearity of the current memories is based on a memory MOS transistor biased in the triode region and a bootstrapped sampling switch. The prototype circuit is implemented using a 0.35-m BiCMOS (SiGe) technology and it occupies 5.7 mm2 of silicon area. According to measurements, THD is –66.8 dBc with a 9.1-MHz input signal and 30-MHz clock frequency. Two-tone test gives intermodulation levels below 68 dBFS at 40-MS/s sampling rate. The power dissipation is 370 mW from a 3-V supply.  相似文献   

16.
A technique to reduce in-band tones in switch-mode power supplies is described. It takes advantage of the noise-shaping properties of the delta-sigma (/spl Delta//spl Sigma/) modulator to eliminate the spikes normally present in switching power supplies. A framework is introduced for comparing the conventional pulsewidth modulated (PWM) controller and this approach. A buck converter test circuit is constructed that is designed for a PWM controller clocked at 200 kHz and then substituted with a /spl Delta//spl Sigma/ modulator controller clocked at 400 kHz. The RMS noise power of the PWM controller is 14.9 mW compared to the rms noise power for the /spl Delta//spl Sigma/ modulator of 75.85 mW measured in a 2-MHz bandwidth. Although the /spl Delta//spl Sigma/ modulator rms noise power is higher, the noise floor is below the tones seen at the output of the PWM controller. A multibit /spl Delta//spl Sigma/ modulator controller, however, provides a significant reduction in the spectral output of the power supply. Values of 3.75 and 0.24 mW rms noise power are observed at the output of a 2-bit and 4-bit /spl Delta//spl Sigma/ modulator controller, respectively.  相似文献   

17.
The modulator IC is a mixed analog/digital transceiver component in a chip set that is designed for the hand-held terminals of the pan-European 900-MHz Groupe Special Mobile (GSM) digital cellular radio network. The concept of the radio-frequency environment in which the circuit is used is explained, focusing on the differences in existing systems. The architecture and different functions of the modulator circuit and details of the digital and analog processing in the transmission mode are discussed. The receiving mode, which is mostly based on analog processing, is highlighted. The device generates Gaussian minimum-shift-keying (GMSK) modulation and converts the received signal to 8-b words after filtering. The modulator IC uses digital waveform generation and a quadrature signal representation. This device is implemented in a 1.5-μm CMOS technology. The power consumption is less than 35 mW from a 5-V supply  相似文献   

18.
A 10-bit 40-Msample/s two-channel parallel pipelined ADC with monolithic digital background calibration has been designed and fabricated in a 1 μm CMOS technology. Adaptive signal processing and extra resolution in each channel are used to carry out digital background calibration. Test results show that the ADC achieves a signal-to-noise-and-distortion ratio of 55 dB for a 0.8-MHz sinusoidal input, a peak integral nonlinearity of 0.34 LSB, and a peak differential nonlinearity of 0.14 LSB, both at a 10-bit level. The active area is 42 mm2, and the power dissipation is 565 mW from a 5 V supply  相似文献   

19.
A three-stage bandpass sigma-delta (ΣΔ) analog-to-digital converter has been designed specifically for operation at low oversampling ratios. In the proposed architecture, the center frequency of the third stage is shifted slightly from that of the first two stages to achieve more efficient noise shaping across the signal band. An experimental modulator based on the proposed topology has been integrated in a 0.25-μm CMOS technology and achieves a dynamic range of 75 dB with a maximum signal-to-noise-plus-distortion ratio (SNDR) of 70 dB when digitizing a 2-MHz signal band centered at 16 MHz. This circuit implements an fs/4 bandpass architecture and thus operates at 64-MHz clock rate. It dissipates 110 mW from a 2.5-V supply, and its active area is 4 mm2  相似文献   

20.
A monolithic 8-bit flash A/D converter is described which digitizes a 40-MHz signal at a conversion rate of over 100 MHz. To obtain full resolution and high accuracy at ultrahigh speed operation, a three-stage comparator with small talk back and other new logic circuits were designed. The process used is a self-aligned bipolar technology. Signal-to-noise ratio of 45 dB was measured at the 30-MHz input frequency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号