首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
羧基化氧化石墨烯-镧复合物抗凝血性能的研究   总被引:1,自引:0,他引:1  
将稀土La(3+)离子接枝到羧基化的氧化石墨烯片层上,制备了一种功能化的氧化石墨烯(GeneO-La).利用红外光谱和透射电镜等手段对所合成的GeneO-La复合物进行了表征;将功能化的氧化石墨烯应用到抗凝血体系中,研究其抗凝血性能.结果表明,La(3+)已经通过配位作用吸附在羧基化的氧化石墨烯片层上.通过溶血实验和血...  相似文献   

2.
采用丁二酸酰基过氧化物对氧化石墨烯(GO)进行表面羧基化,制得羧基化氧化石墨烯(GO—COOH),利用红外光谱、X射线电子能谱、热失重等手段对产物进行了表征,并对GO和GO—COOH在水中和甲苯中的分散性能进行观察。研究结果表明:丁二酸酰基过氧化物受热分解产生的端羧基自由基以共价键的方式接枝到GO表面;与GO相比,GO—COOH在水中的分散稳定性更好,而在甲苯中的分散稳定性变差,这一现象说明GO—COOH较GO引入了更多的极性基团。本方法为GO表面增加更多的活性点提供了一条新途径。  相似文献   

3.
以石墨为原料, 采用Hummers法液相氧化合成了氧化石墨(GO), 通过低温真空剥离预还原、磺化反应、葡萄糖二次还原, 合成了高质量的磺化石墨烯(S-GNS), 有效避免了在此过程中石墨烯大量团聚的现象. 采用傅里叶变换红外(FTIR)光谱、X射线光电子能谱(XPS)、热重分析仪(TG)、X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和原子力显微镜(AFM)等分析手段对磺化石墨烯样品进行了表征. 实验结果表明: 对氨基苯磺酸成功地接枝到了石墨烯上, 磺化石墨烯还原彻底, 热稳定性能高; 石墨烯表面平整, 缺陷少; 单层磺化石墨烯厚度约为1.2 nm. 水溶性、分散性实验结果表明: 磺化石墨烯拥有高水溶性和高分散性. BET比表面积及电性能测试表明: 磺化石墨烯的比表面积高达806.4 m2/g, 薄膜材料的导电率为1150 S/m.  相似文献   

4.
以氧化石墨为前驱体,采用真空辅助热膨胀法在低温下即获得功能化石墨烯片。将所得石墨烯在不同温度下热处理,制备了表面化学结构不同的石墨烯片,并用透射电子显微镜、X射线衍射、X射线光电子能谱、傅里叶变换红外光谱等方法对样品进行分析表征。结果表明,还原氧化石墨烯片中含氧官能团的种类和数量均随热还原温度的升高而减小。  相似文献   

5.
氧化还原法制备石墨烯及其表征   总被引:2,自引:2,他引:0  
采用改进的Hummers法氧化处理石墨粉制得氧化石墨,利用超声波作用将氧化石墨剥离,得到均匀分散的氧化石墨烯胶状悬浮液,然后在水合肼的还原作用下得到石墨烯。采用SEM、XRD以及Raman光谱对样品进行了形貌、结构以及谱学的表征分析。考察了还原过程中温度对还原效果的影响,以及中性条件下、碱性条件下水合肼用量对还原效果的影响。  相似文献   

6.
通过简单的两步溶液法对石墨烯进行羧基接枝和表面活性剂修饰, 并研究其电化学性能。研究结果表明, 与纯石墨烯(比电容50 F/g)相比, 表面活性剂本身并不能有效提高石墨烯的比电容(45 F/g), 羧基功能化可以将石墨烯的比电容提高至130 F/g。而羧基功能化和表面活性剂修饰双处理工艺能够将石墨烯的比电容提高到230 F/g, 且经800次充放电循环后其比电容仍然具有95%的保持率, 表明该材料具有良好的循环稳定性。因此, 调控石墨烯的表面化学特性对提高其电化学性能具有重要的意义。  相似文献   

7.
氧化石墨烯及其与聚合物的复合   总被引:11,自引:1,他引:11  
石墨烯是单原子厚度的二维碳原子晶体,也是性能优异的新型纳米复合填料.近三年来,石墨烯从概念上的二维材料变成现实材料,在化学和物理学界均引起轰动.通过述评氧化石墨及氧化石墨烯的制备、结构、改性及其与聚合物的复合,展望了石墨烯及其复合材料的研究前景,认为通过机械剥离氧化石墨可规模化制备氧化石墨烯,进一步将其化学改性并制备复合材料已取得较大进展,这一途径被认为足石墨烯规模化应用的战略起点.  相似文献   

8.
采用Hummers法液相氧化合成了氧化石墨(GO),通过高真空低温热膨胀法制备得到了高比表面积的石墨烯(GNS)材料。采用X射线衍射(XRD)、傅里叶变换红外(FT-IR)光谱、X射线光电子能谱(XPS)、拉曼光谱(RS)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)等分析手段对石墨烯样品进行了表征。结果表明,石墨烯还原彻底,呈褶皱的片层状结构,缺陷少;BET测试及氢气高压吸附实验结果表明,通过高真空低温热剥离法制备的石墨烯材料比表面积高达908.3m2/g,并且拥有丰富的孔道结构;在温度为25、40和55℃,压力2500kPa条件下,氢气的吸附量分别达到了1.81%、0.995%和0.44%(质量分数),表明了石墨烯在储氢领域拥有着广阔的应用前景。  相似文献   

9.
氧化石墨烯及其氧化铁复合物的原位合成   总被引:3,自引:1,他引:3  
开发了在富氧Fe(acac),络合物体系中膨化氧化石墨制取氧化石墨烯/Fe2O3复合物的一步法.应用FT-IR、XRD、VSM、AFM及低温直流电导测量法对所制氧化石墨/Fe2O3复合物进行表征.FT-IR研究结果显示:膨化后,氧化石墨的环氧基团分解,同时形成了氧化铁粒子与氧化石墨烯复合物.AFM测试表明:在较高Fe2O3含量下,氧化石墨烯片层结构剥蚀形成厚达5 mm氧化石墨烯叠层.VSM研究显示:在室温和0.13 emu/g~5.5 emu/g范围内,全部复合物呈铁磁特性.这些复合物的导电性受控于准电子跃迁机制.  相似文献   

10.
氧化石墨烯的制备及其对罗丹明B的吸附性能   总被引:1,自引:0,他引:1  
采用改进Hummers法以石墨粉为原料制备氧化石墨烯(GO),利用红外光谱仪、X射线衍射仪和扫描电镜对其官能团、物相结构和表面形貌进行表征分析。研究所制备的GO对阳离子染料罗丹明B(RB)的吸附性能,考察了吸附时间、GO用量、吸附温度和溶液初始pH对吸附性能的影响。结果表明:GO吸附RB的适宜条件为:吸附时间70min、GO用量0.01g、温度30℃、pH=3,GO对RB的最大吸附量为2002.71mg/g。由吸附动力学及等温吸附模型分析可知,GO对RB的吸附符合准二级动力学模型及Langmuir等温吸附模型。  相似文献   

11.
12.
The biocompatibility improvement of graphene oxide is crucial for biomedical applications. Herein, we propose to prepare carboxylated graphene oxide (GeneO–COOH) with glutamic acid (Glu) at different pH values. The complexes (GemeO–COOH/Glu) are characterized by FT-IR, XRD, TG, and Zeta potential. The results show that the complexes have close relation with pH value due to the acid-responsive Glu. It is demonstrated that GeneO–COOH complexes with Glu via amidation reaction in the basic domain. The blood compatibility of GeneO–COOH/Glu complexes is evaluated by hemolysis and recalcification test. The results show that the plasma recalcification time is prolonged greatly in the whole blood, and the hemolysis rates are less than 5 %. In a word, GeneO–COOH/Glu complexes are blood compatible at low concentration, which is potential for producing blood-contacting materials.  相似文献   

13.
Graphene oxide (GO)/carboxylated acrylonitrile butadiene rubber (xNBR) vulcanizates were prepared in this study by mixing exfoliated GO aqueous dispersion with xNBR latex. The GO monolayers were exfoliated from natural flake graphite by Hummers' method. This study shows that GO could be dispersed homogeneously in xNBR matrix up to 1.2 vol.%. Adding GO nanosheets has a great effect on the mechanical, thermal stability, thermal conductivity, and thermal diffusivity of GO/xNBR vulcanizates. With the incorporation of GO nanosheets, the thermal stability, thermal conductivity, and thermal diffusivity of GO/xNBR vulcanizates increased significantly. The mechanical property of GO/xNBR vulcanizates reached its peak with 1.2 vol.% of GO content. The addition of 1.2 vol.% of GO nanosheets largely enhanced the tensile strength and modulus at 100 % elongation of xNBR by more than 370 and 230 %, respectively. The thermal conductivity and diffusivity of the GO/xNBR vulcanizates with 1.6 vol.% of GO had 1.4- and 1.2-fold improvements, respectively, compared to that of unfilled xNBR vulcanizate.  相似文献   

14.
A green facile method has been successfully used for the synthesis of graphene oxide sheets decorated with silver nanoparticles (rGO/AgNPs), employing graphite oxide as a precursor of graphene oxide (GO), AgNO3 as a precursor of Ag nanoparticles (AgNPs), and geranium (Pelargonium graveolens) extract as reducing agent. Synthesis was accomplished using the weight ratios 1:1 and 1:3 GO/Ag, respectively. The synthesised nanocomposites were characterised by scanning electron microscopy, transmission electron microscopy, atomic force microscopy, X‐ray diffraction, UV‐visible spectroscopy, Raman spectroscopy, energy dispersive X‐ray spectroscopy and thermogravimetric analysis. The results show a more uniform and homogeneous distribution of AgNPs on the surface of the GO sheets with the weight ratio 1:1 in comparison with the ratio 1:3. This eco‐friendly method provides a rGO/AgNPs nanocomposite with promising applications, such as surface enhanced Raman scattering, catalysis, biomedical material and antibacterial agent.Inspec keywords: silver, nanoparticles, graphene, nanocomposites, scanning electron microscopy, transmission electron microscopy, atomic force microscopy, X‐ray diffraction, ultraviolet spectra, visible spectra, X‐ray chemical analysis, surface enhanced Raman scattering, catalysis, nanofabricationOther keywords: antibacterial agent, biomedical material, catalysis, surface enhanced Raman scattering, rGO‐AgNP nanocomposite, eco‐friendly method, homogeneous distribution, thermogravimetric analysis, energy dispersive X‐ray spectroscopy, Raman spectroscopy, UV‐visible spectroscopy, X‐ray diffraction, atomic force microscopy, transmission electron microscopy, scanning electron microscopy, nanocomposites, reducing agent, geranium, graphene oxide sheets, graphite oxide, silver nanoparticles, green facile method  相似文献   

15.
16.
This study describes the development and testing of a simple and novel enzyme‐free nanolabel for the detection and signal amplification in a sandwich immunoassay. Gold nanoparticles decorated reduced graphene oxide (rGOAu) was used as the nanolabel for the quantitative detection of human immunoglobulin G (HIgG). The rGOAu nanolabel was synthesised by one pot chemical reduction of graphene oxide and chloroauric acid using sodium borohydride. The pseudo‐peroxidase behaviour of rGOAu makes the nanolabel unique from other existing labels. The immunosensing platform was fabricated using self‐assembled monolayers of 11‐mercaptoundecanoic acid (11‐MUDA) on a gold disc electrode. The covalent immobilisation of antibody was achieved through the bonding of the carboxyl group of 11‐MUDA and the amino group of the antibody using chemical linkers [1‐ethyl‐3‐(3‐dimethylaminopropyl)carbodiimide] and N ‐hydroxysuccinimide. The fabricated immunosensor exhibited a linear range that included HIgG concentrations of 62.5–500 ng ml−1. The sensor was also used for the testing of HIgG in the blood sample.Inspec keywords: proteins, nanomedicine, reduction (chemical), chemical sensors, nanofabrication, electrochemical sensors, voltammetry (chemical analysis), gold, oxidation, self‐assembly, monolayers, molecular biophysics, biochemistry, biosensors, nanoparticles, nanosensors, blood, grapheneOther keywords: gold nanoparticles, voltammetric immunosensing, enzyme‐free nanolabel, signal amplification, sandwich immunoassay, human immunoglobulin G, rGOAu nanolabel, chloroauric acid, sodium borohydride, 11‐mercaptoundecanoic acid, 11‐MUDA, gold disc electrode, chemical linkers, 1‐ethyl‐3‐(3‐dimethylaminopropyl)carbodiimide], HIgG concentrations, reduced graphene oxide nanolabel, quantitative HIgG detection, one pot chemical reduction, covalent antibody immobilisation, carboxyl group bonding, pseudo‐peroxidase behaviour, self‐assembled monolayers, N‐hydroxysuccinimide, immunosensor, blood sample, Au‐CO  相似文献   

17.
We demonstrate the fabrication of wearable supercapacitor electrodes.The electrodes were applied to wearable fabric by supersonically spraying the fabric with reduced graphene oxide(rGO)followed by decoration with iron oxide(Fe2O3)nanoparticles via a hydrothermal process.The integration of iron oxide with rGO flakes on wearable fabric demonstrates immense potential for applications in high-energy-storage devices.The synergetic impact of the intermingled rGO flakes and Fe2O3 nanoparticles enhances the charge transport within the composite electrode,ultimately improving the overall electrochemical performance.Taking advantage of the porous nature of the fabric,electrolyte diffusion into the active rGO and Fe2O3 materials was significantly enhanced and subsequently increased the electrochemical interfacial activities.The effect of the Fe2O3 concentration on the overall electrochemical performance was investigated.The optimal composition yields a specific capacitance of 360 F g-1 at a current density of 1A g-1 with a capacitance retention rate of 89%after 8500 galvanostatic cycles,confirming the long-term stability of the Fe2O3/rGO fabric electrode.  相似文献   

18.

The coupling effect and synergistic effect between the two metal elements of the bimetallic oxide make it has unique electrical characteristics and gas-sensitive properties, but it has the limitation of low conductivity. In this paper, the bimetallic oxide Zn2SnO4 was decorated with reduced graphene oxide (rGO) to increase its electrical conductivity and promote charge transfer during gas adsorption, which enhances the response and shortens the response time of the bimetallic oxide gas sensor. The high-performance ammonia sensor based on Zn2SnO4/rGO nanocomposite material was prepared by environmentally friendly hydrothermal method and spin coating technology. The structure and properties of composite materials were analyzed by X-ray diffraction (XRD), field emission scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The ammonia sensing performance of Zn2SnO4/rGO nanocomposite sensor was tested at room temperature, including the dynamic response, response/recovery time, selectivity, repeatability, long-term stability. It showed a good sensing response to ammonia (22.94 for 100 ppm), and a fast response/recovery time (20 s/27 s). Finally, the response mechanism of Zn2SnO4/rGO nanocomposite sensor is explained. The enhanced ammonia sensing properties of Zn2SnO4/rGO nanocomposite sensor were ascribed to the synergistic effect and p–n heterojunction between Zn2SnO4 and rGO.

  相似文献   

19.
Biology systems harvest solar energy to regulate ions and molecules precisely across cell membrane that is essential to maintain their life sustainability.Recently,artificial light-driven directional ion transport through graphene oxide membranes has been established,where the membrane converts light power into a transmembrane motive force.Herein,we report a silver nanoparticles decorated graphene oxide membranes for enhanced photo-driven ionic transport.Asymmetric light stimulated charge carrier dynamics,such as advanced light absorption efficiency,extended lifetime and efficient separation of photo-excited charge carriers,are account for the ion-driven force enhancement.Based on metal nanoparticles decoration,the concept of the guest-interactions of plasmon-enhanced photo-driven ion transport in two-dimentional layered membranes will stimulate broad researches in sensing,energy storage and conversion and water treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号