首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Aluminium oxide (Al2O3) films doped with CeCl3, TbCl3 and MnCl2 were deposited at 300 °C with the ultrasonic spray pyrolysis technique. The films were analysed using the X-ray diffraction technique and they exhibited a very broad band without any indication of crystallinity, typical of amorphous materials. Sensitization of Tb3+ and Mn2+ ions by Ce3+ ions gives rise to blue, green and red simultaneous emission when the film activated by such ions is excited with UV radiation. The overall efficiency of such energy transfer results to be about 85% upon excitation at 312 nm. Energy transfer from Ce3+ to Tb3+ ions through an electric dipole-quadrupole interaction mechanism appears to be more probable than the electric dipole-dipole one. A strong white light emission for the Al2O3:Ce3+(1.3 at.%):Tb3+(0.2 at.%):Mn2+(0.3 at.%) film under UV excitation is observed. The high efficiency of energy transfer from Ce3+ to Tb3+ and Mn2+ ions, resulting in cold white light emission (x = 0.30 and y = 0.32 chromaticity coordinates) makes the Ce3+, Tb3+ and Mn2+ triply doped Al2O3 film an interesting material for the design of efficient UV pumped phosphors for white light generation.  相似文献   

2.
A novel phosphor BaY2Si3O10 (BYSO): Ce3+, Tb3+ was synthesized by the conventional solid-state reaction, which displays tunable color emission from blue to blue-green under ultraviolet excitation by adjusting the radio of Ce3+ and Tb3+ appropriately. Photoluminescence characteristics were carefully investigated. We demonstrate the existence of efficient energy transfer from Ce3+ to Tb3+ in BaY2Si3O10: Ce3+, Tb3+ phosphor. The energy transfer Ce3+ → Tb3+ was proved to be governed by dipole–quadrupole interaction.  相似文献   

3.
The luminescence properties of LaPO4:Tb3+,Me3+ (Me = Gd, Bi, Ce) were investigated under VUV excitation. The results indicate that only Gd3+ plays an intermediate role in energy transfer from the host absorption band to Tb3+ under 147 nm excitation, Bi3+ and Ce3+ have no contribution to improving the emission intensity of La0.95PO4:Tb0.053+ because the charge transfer band of Bi3+ is mismatching for the excitation wavelength (147 nm) and Ce3+ can be oxidized easily. A new band at 135 nm is observed in the excitation spectrum of La0.92PO4:Tb0.053+,Bi0.033+, which may correlate with the absorption of Bi2+.  相似文献   

4.
Eu3+- and Tb3+-activated SrGdGa3O7 phosphors were synthesized by the solid-state reaction and their luminescence properties were investigated. Sr(Gd1 − xEux)Ga3O7 and Sr(Gd1 − xTbx)Ga3O7 formed continuous solid solution in the range of x = 0-1.0. Unactivated SrGdGa3O7 exhibited a typical characteristic excitation and emission of Gd ion. The SrGdGa3O7:xEu3+ and SrGdGa3O7:xTb3+ phosphors also showed the well-known Eu3+ and Tb3+ excitation and emission. The energy transfer from Gd3+ to Eu3+ and Tb3+ were verified by photoluminescence spectra. The dependence of photoluminescence intensity on Eu3+ and Tb3+ concentration were also studied in detail and the photoluminescence (PL) intensity of SrGdGa3O7:Eu and SrGdGa3O7:Tb were compared with commercial phosphors, Y2O3:Eu and LaPO4:Ce,Tb. The luminescence decay measurements showed that the lifetimes of Eu3+ and Tb3+ were in the range of microsecond. The energy transfer from Gd3+ to Tb3+ was also observed in decay curve.  相似文献   

5.
RE3+-activated monoclinic Na3GdP2O8 (RE3+ = Tb3+, Dy3+, Eu3+, Sm3+) phosphors have been synthesized by a solid-state reaction method. Their photoluminescence properties in the vacuum ultraviolet (VUV) region were investigated. By analyzing their excitation spectra, the host-related absorption band was determined to be around 166 nm. The f-d transition bands and the charge transfer bands for Na3GdP2O8:RE3+ (RE3+ = Tb3+, Dy3+, Eu3+, Sm3+) were assigned and corroborated. For the sample Na3GdP2O8:5%Tb3+, the strong bands at around 202 and 221 nm are assigned to the 4f-5d spin-allowed transitions and the weak band at 266 nm is related to the spin-forbidden transition of Tb3+. For Na3GdP2O8:5%Dy3+, the broad band at 176 nm could be related to the f-d transitions of Dy3+ and the O2− → Dy3+ charge transfer band (CTB) besides the host-related absorption. In the excitation spectrum of Eu3+ doped sample, the O2− → Eu3+ CTB is observed to be at 245 nm. For the Sm3+ doped sample, the O2− → Sm3+ CTB is not distinguished obviously and is overlapped with the host-related absorption band.  相似文献   

6.
Y6Si3O9N4:Ce3+ phosphor was prepared by a solid-state reaction in reductive atmosphere. X-ray powder diffraction (XRD) analysis confirmed the formation of Y6Si3O9N4:Ce3+. Scanning electron microscopy (SEM) observation indicated that the microstructure of the phosphor consisted of irregular fine grains with an average size of about 5 μm. Photoluminescence (PL) measurements showed that the phosphor can be efficiently excited by near ultraviolet (UV) or blue light excitation, and exhibited bright green emission peaked at about 525 nm. Compared with Ce3+-doped Y4Si2O7N2 phosphors, Ce3+-doped Y6Si3O9N4 phosphors showed longer wavelengths of both excitation and emission. The Y6Si3O9N4:Ce3+ is a potential green-emitting phosphor for white LEDs.  相似文献   

7.
One-dimensional (1D) Y2O3:Tb3+ and Gd2O3:Tb3+ microrods have been successfully prepared through a large-scale and facile hydrothermal method followed by a subsequent calcination process in N2/H2 mixed atmosphere. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (IR), thermogravimetric analysis (TGA), energy-dispersive X-ray spectra (EDX), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), photoluminescence (PL) and cathodoluminescence (CL) spectra as well as kinetic decays were used to characterize the samples. The as-formed products via the hydrothermal process could transform to cubic Y2O3:Tb3+ and Gd2O3:Tb3+ with the same morphology and slight shrinking in size after a postannealing process. Both Y2O3:Tb3+ and Gd2O3:Tb3+ microrods exhibit strong green emission corresponding to 5D4 → 7F5 transition (542 nm) of Tb3+ under UV light excitation (307 and 258 nm, respectively), and low-voltage electron beam excitation (1.5 → 3.5 kV), which have potential applications in fluorescent lamps and field emission displays.  相似文献   

8.
Lanthanide-doped uniform pure cubic phase Y2O3 hollow microspheres have been successfully synthesized via a facile, high yield urea-based coprecipitation route with assistant of carbon spheres templates. The diameter and shell thickness of the microspheres can be manipulated by adjusting carbon sphere templates. Under a 980 nm excitation, Yb3+/Er3+, Er3+, Yb3+/Tm3+-doped Y2O3 hollow microspheres emit bright upconversion red, green, blue light with high purity, respectively, while Eu3+, Eu3+/Tb3+-doped Y2O3 hollow microspheres exhibit intense downconversion red light under the excitation of 254 nm ultraviolet light. Especially, the 610 nm emission intensity of Eu3+ in the Eu3+/Tb3+-codoped Y2O3 hollow microspheres is almost 5 times of that in the Y2O3:Eu3+ hollow microspheres indicating the occurring of the energy transfer from Tb3+ to Eu3+ ions.  相似文献   

9.
The present investigation aims to demonstrate the potentiality of Tb3+ and Ce3+ co-doped Ca4Y6(SiO4)6O phosphors. By incorporation of Ce3+ into Ca4Y6(SiO4)6O: Tb3+, the excitation band was extended from short-ultraviolet to near-ultraviolet region. The energy transfer from Ce3+ to Tb3+ in Ca4Y6(SiO4)6O host was investigated and demonstrated to be a resonant type via a dipole–dipole mechanism with the critical distance of 10.2 Å. When excited by 352 nm, Ca4Y6(SiO4)6O: Ce3+, Tb3+ exhibited a brighter and broader violet-blue emission (421 nm) from the Ce3+ and an intense green emission (542 nm) from the Tb3+. Combining the two emissions whose intensities were adjusted by changing the doping levels of the co-activator, an optimized white light with chromaticity coordinates of (0.278, 0.353) is generated in Ca4Y6(SiO4)6O: 2% Ce3+, 8% Tb3+, and this phosphor could be potentially used in near-ultraviolet light-emitting diodes.  相似文献   

10.
A significant practical application for nanostructured materials is X-ray medical imagery, because it is necessary to use dense materials in order to enable absorption of high energy photons. An important requirement of these materials is UV-vis range emission produced by X-ray excitation, which can be influenced by the particle size. Europium doped gadolinium oxide is a well known red phosphor. Moreover, nanophosphors of Gd2O3 codoped with Tb3+, Eu3+ increase their light yield by energy transfer between Tb3+ and Eu3+. In this study, Gd2O3 nanopowders codoped with Eu3+ and Tb3+ (2.5 at.% Eu3+, and 0.005 and 0.01 at.% Tb3+) were obtained via a sol-gel process using gadolinium pentanedionate as precursor and europium and terbium nitrates as doping sources. In this paper, we report the influence of annealing temperature on the structure, morphology and luminescent properties of Gd2O3:Eu3+, Tb3+ by means of TGA, XRD, TEM and X-ray emission measurements.  相似文献   

11.
New Ce3+ and/or Mn2+ activated Ca10K(PO4)7 phosphors were prepared by solid-state reaction, and their photoluminescence properties upon ultraviolet and vacuum ultraviolet excitation were investigated. Under 254 nm excitation, a series of Ca10K(PO4)7:xMn2+ samples exhibit two emission bands at 463 and 650 nm, which could be attributed to oxygen defects and 4T16A1 transition of Mn2+, respectively. And an energy transfer from defects to Mn2+ has been observed. With the Mn2+ content increased, the emitting hues of Ca10K(PO4)7:Mn2+ can range from blue to red. By co-doping Ce3+ to Ca10K(PO4)7:Mn2+, the emission intensity of Mn2+ is strongly enhanced due to an efficient energy transfer by [Ce3+ → Mn2+] and [defects → Ce3+ → Mn2+]. But under 147 nm excitation, the emission intensity of Mn2+ in Ca10K(PO4)7:0.25Mn2+ decreases slightly compared with that in Ca10K(PO4)7:025Mn2+, 0.1Ce3+, 0.1K+ due to the host sensitization competition between Ce3+ and Mn2+.  相似文献   

12.
To improve the infrared emission of Yb3+ ions doped in the garnet host Y3Al5O12 (YAG) single crystal through the energy transfer from Ce3+ to Yb3+ ions, the 〈1 1 1〉-oriented YAG:Ce3+, YAG:Yb3+, YAG:(Ce3+, Yb3+) and Yb3Al5O12:Ce3+ (YbAG:Ce3+) single crystals were grown using the Czochralski Method, respectively. The excitation and emission spectra of these garnet single crystals were characterized. In YAG:Ce3+ crystal, the yellow emission of Ce3+ ions present, but it was completely extinguished in YAG:(Ce3+, Yb3+) crystal and YbAG:Ce3+ crystal. However, the characteristic absorption bands of Ce3+ still existed in the excitation spectrum of Yb3+ ions, which showed that the energy absorbed by Ce3+ ions can be transferred to Yb3+ ions for its infrared emission.  相似文献   

13.
Very small nanoparticles (size 3-5 nm) of Y2Sn2O7, Y2Sn2O7:Tb3+ and Sb3+ co-doped Y2Sn2O7:Tb3+ were prepared at a relatively low temperature of 700 °C. Y2Sn2O7 host is characterised by an emission around 436 nm, which is arising from the oxygen vacancies present in the lattice. Tb3+ emission improves significantly when Sb3+ ions are co-doped with Y2Sn2O7:Tb3+ nanoparticles. Incorporation of Sb3+ ions at the Y3+ site of Y2Sn2O7 lattice and associated lattice distortion around Tb3+/Y3+ ions brought about by the difference in the stable coordination number of Sb3+ and Y3+ ions are responsible for the improved Tb3+ emission from the co-doped samples.  相似文献   

14.
Aluminum oxynitride(AlON) phosphors co-doped by Tb3+ and Ce3+ were synthesized by nitridation of the precursor which was co-precipitated from Al(NO3)3 solution and nanosized carbon black at 1750 °C for 2 "hrs" in flowing nitrogen atmosphere. The obtained AlON based powders were composed of polycrystalline spinel typed particles with sizes in the range of 1-3 μm. Under an excitation of 275 nm, it was found that co-doping of Ce3+ could drastically enhance the luminescence of AlON:Tb3+ powder by energy transfer. The product with 0.5 mol% Ce3+ and 0.67 mol% Tb3+ exhibited a strong broad green emission at 540 nm. The critical quenching concentration of Tb3+ in AlON:0.5 mol% Ce3+/xmol% Tb3+ phosphor was determined to be 0.67 mol%. It was supposed that the mechanism of concentration quenching of Tb3+ in AlON:0.5 mol% Ce3+ xmol% Tb3+ phosphor was dipole-dipole interaction.  相似文献   

15.
The photoluminescent properties of a series of Tb3+-doped Na3GdP2O8 phosphors excitable by vacuum ultraviolet and ultraviolet light are reported. The host related absorption, f-f and f-d transitions of Gd3+ and Tb3+, and charge transfer of O2− → Gd3+ and O2− → Tb3+ are assigned. Under 147 nm light excitation, Na3GdP2O8:Tb3+ phosphors show efficient green emissions with a dominant peak at 545 nm. The optimal sample Na3Gd0.4Tb0.6P2O8 shows a shorter decay time and a comparable brightness when compared with the commercial Zn2SiO4:Mn2+ green phosphor. These results demonstrate that it is a potential candidate for plasma display panels application.  相似文献   

16.
The luminescence of Mn2+, Bi3+, Ce3+ and Tb3+ in GdMgB5O10 and some codoped materials is reported. Energy transfer rates are derived from the experiments. The Bi3+ → Gd3+ and Gd3+ → Bi3+ transfer rates are about equal at room temperature. The excitation energy is able to migrate among the Gd3+ sublattice. The Ce3+ ion is a good sensitizer for this sublattice. By diluting the Gd3+ sublattice with La3+ ions, the energy migration in Gd3+ zig-zag chains was blocked and interchain energy transfer occurred. Very efficient phosphors can be obtained by using Ce3+ as a sensitizer, the Gd3+ sublattice as an intermediary and Tb3+ as an activator.  相似文献   

17.
A blue-emitting phosphor of NaMg4(PO4)3:Eu2+, Ce3+ was prepared by a combustion-assisted synthesis method. The phase formation was confirmed by X-ray powder diffraction measurement. Photoluminescence excitation spectrum measurements show that the phosphor can be excited by near UV light from 230 to 400 nm and presents a dominant luminescence band centered at 424 nm due to the 4f65d1 → 4f7 transition of Eu2+ ions at room temperature. Effective energy transfer occurs in Ce3+/Eu2+ co-doped NaMg4(PO4)3 due to large spectral overlap between the emission of Ce3+ and excitation of Eu2+. Co-doping of Ce3+ enhances the emission intensity of Eu2+ greatly by transferring its excitation energy to Eu2+, and Ce3+ plays a role as a sensitizer. Ce3+-Eu2+ co-doped NaMg4(PO4)3 powders can possibly be applied as blue phosphors in the fields of lighting and display.  相似文献   

18.
New phosphors M2(Mg, Zn)Si2O7:Mn2+ (M = Ca, Sr, Ba) were prepared by sol-gel process, and their luminescent properties in ultraviolet and vacuum ultraviolet region were investigated. The results showed that the (Ca, Sr, Ba)2MgSi2O7:Mn2+ samples did not emit any visible light; the Sr2ZnSi2O7:Mn2+ and Ca2ZnSi2O7:Mn2+ samples showed green light. The Ba2ZnSi2O7:Mn2+ sample mainly showed green light under 254 nm excitation and red light under 147 nm excitation. The different emission was due to the Mn2+ ions occupied different sites, which were excited selectively. Among the three phosphors Sr2ZnSi2O7:Mn2+ showed the highest green emission intensity, and its decay time was shorter than that of Zn2SiO4:Mn2+ under 147 nm excitation.  相似文献   

19.
This paper presents hydrothermal synthesis, characterization, and photoluminescence (PL) properties of novel green-emitting phosphors, Gd2Zr2O7:Tb3+. Their crystal structure, morphology and photoluminescence properties were investigated by X-ray powder diffraction (XRD), field emission scanning electron microscopy (FE-SEM), Transmission electron microscopy (TEM) and fluorescence spectrophotometer. The results revealed that one-dimensional Gd2Zr2O7:Tb3+ nanorods with diameter of about 30 nm and length of 150-300 nm were formed, and the products exhibited a fluorite-type structure. PL study revealed that Gd2Zr2O7:Tb3+ phosphors presented dominant green emission luminescence, which was attributed to the transitions from 5D4 excited states to 7FJ (J = 3-6) ground states of Tb3+. The luminescence intensity of Gd2Zr2O7:Tb3+ with different Tb3+ concentration was also investigated and reported, and an obvious concentration quenching was observed when Tb3+ ion concentration was 5 at.%.  相似文献   

20.
Tb3+ doped SrLa2O4 and BaLa2O4 nanophosphors were successfully synthesized via tartaric acid assisted sol–gel method and their luminescent properties were investigated. The crystal structure and morphology of SrLa2O4:Tb3+ and BaLa2O4:Tb3+ was studied by X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM). Thermal decomposition behavior of the dried gels was investigated by thermogravimetry (TG) and differential thermal analysis (TGA). Photoluminescence (PL) behaviors of these nanophosphors were checked by the excitation and emission spectra. These SrLa2O4 and BaLa2O4 nanophosphors displayed green color under a UV source due to characteristic transition of Tb3+ from 5D4 → 7F5 at 544 nm. The dependence of photoluminescence intensity on Tb3+ ion concentration, tartaric acid concentration and annealing temperature were also studied in detail. In addition, the optimum doping concentration and time-resolved luminescence spectroscopy were also investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号