首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Thermoelectric materials suitable for practical thermoelectric power generators should, ideally, be based on light elements, for example Si and Al, which are abundantly available. For this reason, silicon clathrate compounds in which both Ga and Al were substituted for Si were synthesized and their thermoelectric properties were investigated. The temperature-dependent electrical resistivity of the samples indicated their metallic nature, and their negative Seebeck coefficient suggested that charge transport in the samples was mainly through electron transport. The maximum absolute value of the Seebeck coefficient achieved was ?180 μV/K at 1040 K for Ba7.90Ga13.8Al2.29Si30.0. Thus, these materials have potential for use in practical thermoelectric power generators.  相似文献   

2.
The transport and thermoelectric properties of semiconducting rhenium silicide ReSi1.75 are comprehensively studied both experimentally and theoretically. Single-crystal samples of undoped and aluminumdoped ReSi1.75 are grown by floating-zone melting using optical heating. The temperature dependences of the resistivity, Hall coefficient, and Seebeck coefficient (thermoelectric power) are measured in the range 77–800 K. At room temperature, the charge-carrier concentration for the undoped rhenium silicide is 1019 cm?3 and the carrier mobility is 30 cm2/(V s). The theoretical study of the transport and thermoelectric properties includes ab initio calculation of the band structure; estimation of the carrier effective masses; simulation of the electron and hole mobility, taking into account classical scattering mechanisms; and calculation of the Seebeck coefficient. The results of the simulation and the experimental data are in good agreement.  相似文献   

3.
We report the thermoelectric properties of Mn-doped Cu2Mn x Sn1?x Se3 compound, with x ranging from 0.005 to 0.1 at temperature ranging from 80?K to 723?K. All samples maintain cubic zincblende-like structure, and no impurity phase was detected. The electrical resistivity decreases rapidly when Mn4+ replaces Sn2+ in the matrix. The excess Mn impurities in the x?=?0.05 and x?=?0.1 samples also affect the Seebeck coefficient. The total thermal conductivity is increased for Mn-doped samples except for the x?=?0.005 sample. In all, both power factor and figure of merit are improved by Mn doping over the entire temperature range. The ZT value of the x?=?0.02 sample reaches 0.035 at 300?K, and for x?=?0.01 reaches 0.41 at 716?K, which are comparable to the best thermoelectric performance for ternary Cu-based compounds.  相似文献   

4.
Indium-selenium-based compounds have received much attention as thermoelectric materials since a high thermoelectric figure of merit of 1.48 at 705?K was observed in In4Se2.35. In this study, four different compositions of indium-selenium compounds, In2Se3, InSe, In4Se3, and In4Se2.35, were prepared by mechanical alloying followed by spark plasma sintering. Their thermoelectric properties such as electrical resistivity, Seebeck coefficient, and thermal conductivity were measured in the temperature range of 300?K to 673?K. All the In-Se compounds comprised nanoscaled structures and exhibited n-type conductivity with Seebeck coefficients ranging from ?159???V?K?1 to ?568???V?K?1 at room temperature.  相似文献   

5.
Ca z Co4−x (Fe/Mn) x Sb12 skutterudites were prepared by mechanical alloying and hot pressing. The phases of mechanically alloyed powders were identified as γ-CoSb2 and Sb, but they were transformed to δ-CoSb3 by annealing at 873 K for 100 h. All specimens had a positive Hall coefficient and Seebeck coefficient, indicating p-type conduction by holes as majority carriers. For the binary CoSb3, the electrical conductivity behaved like a nondegenerate semiconductor, but Ca-filled and Fe/Mn-doped CoSb3 showed a temperature dependence of a degenerate semiconductor. While the Seebeck coefficient of intrinsic CoSb3 increased with temperature and reached a maximum at 623 K, the Seebeck coefficient increased with increasing temperature for the Ca-filled and Fe/Mn-doped specimens. Relatively low thermal conductivity was obtained because fine particles prepared by mechanical alloying lead to phonon scattering. The thermal conductivity was reduced by Ca filling and Fe/Mn doping. The electronic thermal conductivity was increased by Fe/Mn doping, but the lattice thermal conductivity was decreased by Ca filling. Reasonable thermoelectric figure-of-merit values were obtained for Ca-filled Co-rich p-type skutterudites.  相似文献   

6.
La x Mg2?x Si0.49Ge0.5Sb0.01 compounds (x?=?0, 0.005, 0.01, 0.02) were synthesized by solid-state reaction followed by spark plasma sintering. The thermoelectric properties, such as the Seebeck coefficient, the electrical and thermal conductivities, and ZT, of these compounds have been studied in the temperature range of 300?K to 823?K. The figure of merit of this n-type compound has been raised above unity at 823?K for the sample with x?=?0.01, a value 60% higher than that of Mg2Si0.49Ge0.5Sb0.01. The reduction of the thermal conductivity via increasing phonon scattering is considered as the main reason for the enhanced ZT. These observations demonstrate an opportunity to improve the thermoelectric performance of Mg2Si1?x Ge x solid solutions.  相似文献   

7.
Mg2Si n Sn1?n solid solutions consist of nontoxic widespread elements. In this work a number of samples of Mg2Si n Sn1?n solid solutions, where 1 ≥ n ≥ 0.7 with various carrier concentrations, were obtained using microcrystalline powder by hot pressing in vacuum. The Seebeck coefficient and the thermal and electrical conductivity were measured in the temperature range from 300 K to 800 K. It is shown that the specific thermoelectric figure of merit (the ratio of the thermoelectric figure of merit to the material density) of these samples weakly depends on the composition of the solid solution. Hence, whether a solid solution or pure Mg2Si is used depends on the application temperature of the material.  相似文献   

8.
To optimize the thermoelectric properties of Si2Ti-type Al32Mn34Si34 (C54-phase), which possesses a large absolute Seebeck coefficient |S| exceeding 300 μV/K with negative sign, we partially substituted Cr and Fe for Mn, and succeeded in decreasing the number of valence electrons (in the case of Cr) without observing precipitation of secondary phases. A large, positive Seebeck coefficient exceeding 200 μV/K was observed for Al32Cr x Mn34−x Si34 (1 ≤ x ≤ 2.5), which consists almost solely of the C54-phase. The increase of hole concentration caused by Cr substitution for Mn was confirmed by both the reduction in electrical resistivity and the sign reversal of the Seebeck coefficient. The largest ZT-value for positive Seebeck coefficient (p-type behavior) was obtained for Al32Cr2.5Mn31.5Si34, with the resulting ZT-value reaching a magnitude twice as large as the largest ZT-value of the ternary compound Al33Mn34Si33 possessing p-type behavior.  相似文献   

9.
In this paper, the thermoelectric properties of ZnO doped with Al, Bi and Sn were investigated by combining experimental and theoretical methods. The average Seebeck coefficient of Bi doped ZnO over the measured temperature range is improved from −90 to −497 μV/K. However, segregation of Bi2O3 in ZnO:Bi sample, confirmed by FESEM, lead to enormous grain growth and low electrical conductivity, which makes Bi is not a good dopant to improve ZT value of ZnO. As a 4+ valence cation, Sn doping actually show an increase in carrier concentration to 1020 cm−3, further enhancing the electrical conductivity. Unfortunately, the Seebeck coefficient of ZnO:Sn samples is even lower than pure ZnO sample, which lead to a low ZT value. As for ZnO:Al sample, with nearly no change in lattice thermal conductivity, electrical conductivity and Seebeck coefficient were both enhanced. Threefold enhancement in ZT value has been achieved in ZnO:Al sample at 760 °C compared with pure ZnO.  相似文献   

10.
The thermoelectric performance of Fe2VAl-based alloys was improved by using the effects of (a) heavy element substitution and (b) off-stoichiometric (Fe/V ≠ 2) composition. The former method led to a significant reduction of lattice thermal conductivity, whereas the latter to an evolution of the Seebeck coefficient. As a result of sample preparation, we confirmed that the dimensionless figure of merit with n-type behavior was increased up to 0.25 at 420 K for the sample obtained at the optimized composition of Fe1.98V0.97Ta0.05Al0.9Si0.1. Electronic structure calculations revealed that the increase of the Seebeck coefficient observed for Fe-poor samples was caused by a reduction of the density of states near the chemical potential.  相似文献   

11.
Sb-doped magnesium silicide compounds have been prepared through ball milling and solid-state reaction. Materials produced were near-stoichiometric. The structural modifications have been studied with powder x-ray diffraction. Highly dense pellets of Mg2Si1?x Sb x (0 ≤ x ≤ 0.04) were fabricated via hot pressing and studied in terms of Seebeck coefficient, electrical and thermal conductivity, and free carrier concentration as a function of Sb concentration. Their thermoelectric performance in the high temperature range is presented, and the maximum value of the dimensionless figure of merit was found to be 0.46 at 810 K, for the Mg2Si0.915Sb0.015 member.  相似文献   

12.
Thermoelectric generators (TEGs) convert heat to electrical energy by means of the Seebeck effect. The Seebeck coefficient is a central thermoelectric material property, measuring the magnitude of the thermovoltage generated in response to a temperature difference across a thermoelectric material. Precise determination of the Seebeck coefficient provides the basis for reliable performance assessment in materials development in the field of thermoelectrics. For several reasons, measurement uncertainties of up to 14% can often be observed in interlaboratory comparisons of temperature-dependent Seebeck coefficient or in error analyses on currently employed instruments. This is still too high for an industrial benchmark and insufficient for many scientific investigations and technological developments. The TESt (thermoelectric standardization) project was launched in 2011, funded by the German Federal Ministry of Education and Research (BMBF), to reduce measurement uncertainties, engineer traceable and precise thermoelectric measurement techniques for materials and TEGs, and develop reference materials (RMs) for temperature-dependent determination of the Seebeck coefficient. We report herein the successful development and qualification of cobalt-doped β-iron disilicide (β-Fe0.95Co0.05Si2) as a RM for high-temperature thermoelectric metrology. A brief survey on technological processes for manufacturing and machining of samples is presented. Focus is placed on metrological qualification of the iron disilicide, results of an international round-robin test, and final certification as a reference material in accordance with ISO-Guide 35 and the “Guide to the expression of uncertainty in measurement” by the Physikalisch-Technische Bundesanstalt, the national metrology institute of Germany.  相似文献   

13.
The temperature dependences of the Seebeck coefficient, and electrical and thermal conductivities of bulk hot-pressed Sb-doped n-type Mg2Si and Mg2Si0.8Sn0.2 samples were measured in the temperature range from 300 K to 850 K together with the Hall coefficients at room temperature. The features of the complex band structure and scattering mechanisms were analyzed based on experimental data within the relaxation-time approximation. Based on the obtained model parameters, the possibility of improvement of the thermoelectric figure of merit due to nanostructuring and grain boundary scattering was theoretically analyzed for both Mg2Si and the solid solution.  相似文献   

14.
Density functional theory and the Boltzmann transport equation were used to calculate the thermoelectric transport coefficients for bulk V2O5 and MV2O5 (M = Cr, Ti, Na, Li). The structural relaxation for the given compounds based on the ABINIT code was observed. The temperature dependences of the Seebeck coefficients as well as electrical and thermal electrical conductivities of all relaxed structures displayed anisotropic behavior. Electrooptical measurements of thermoelectric properties were carried out on V2O5 thin films obtained by thermal evaporation with different post-annealing treatments. A Seebeck coefficient of ?148 μV/K at T = 300 K was obtained in the in-plane direction for V2O5 thin films with thickness less than 100 nm.  相似文献   

15.
Boron-rich cluster compounds are studied for their potential as high-temperature thermoelectric materials with low thermal conductivity. Two B12 icosahedra systems with attractive thermoelectric properties have recently been discovered: p-type REB44Si2 (where RE stands for rare earth) and the anomalous n-type series of RE-B-C(N) homologous compounds. Three different doping effects of these compounds were investigated in this work in an attempt to control the properties: doping disorder into REB44Si2, which is a variable-range hopping system, V-doping of YB44Si2, and C-doping (carbon composition control) of YB28.5C4. The attempt to enhance the Seebeck coefficient in TbB44Si2 through disorder was inconclusive, while V-doping of YB44Si2 had a negative effect on the thermoelectric properties. Controlling the carbon composition of YB28.5C4 appeared to be a promising route for increasing the absolute value of the Seebeck coefficient.  相似文献   

16.
p-Type Yb z Fe4?x Co x Sb12 skutterudites were prepared by encapsulated melting and hot pressing, and the filling and doping (charge compensation) effects on the transport and thermoelectric properties were examined. The electrical conductivity of all specimens decreased slightly with increasing temperature, indicating that they were in a degenerate state due to high carrier concentrations of 1020 cm?3 to 1021 cm?3. The Hall and Seebeck coefficients exhibited positive signs, indicating that the majority carriers are holes (p-type). The Seebeck coefficient increased with increasing temperature to maximum values of 100 μV/K to 150 μV/K at 823 K. The electrical and thermal conductivities were reduced by substitution of Co for Fe, which was responsible for the decreased carrier concentration. Overall, the Yb-filled Fe-rich skutterudites showed better thermoelectric performance than the Yb-filled Co-rich skutterudites.  相似文献   

17.
The Seebeck coefficient and electrical conductivity of CaCu3Ti4O12 (CCTO) ceramics were measured and analyzed in the high temperature range of 300°C to 800°C, and then the electrical conduction mechanism was investigated by using a combination of experimental data fitting and first-principles calculations. The Seebeck coefficient of the CCTO ceramic sintered at 1050°C is negative with largest absolute value of ~650 μV/K at 300°C, and the electrical conductivity is 2–3 orders greater than the value reported previously by other researchers. With increasing sintering temperature, the Seebeck coefficient decreases while the electrical conductivity increases. The temperature dependence of the electrical conductivity follows the rule of adiabatic hopping conduction of small polarons. The calculated density of states of CCTO indicates that the conduction band is mainly contributed by the antibonding states of Cu 3d electrons, therefore small-polaron hopping between CuO4 square planar clusters was proposed. Possible ways to further improve the thermoelectric properties of CCTO are also discussed.  相似文献   

18.
The Al content dependence of crystallographic, thermoelectric, and mechanical properties is reported for polycrystalline Ba8Al x Si46?x (nominal x = 15 to 17) clathrates prepared by combining arc melting and spark plasma sintering methods. The elastic constants and the coefficient of thermal expansion (CTE), which are also important properties for designing thermoelectric devices, are presented. Powder x-ray diffraction, scanning electron microscopy, and energy-dispersive x-ray spectroscopy (EDX) indicate that the type I clathrate is the major phase of the samples but impurity phases (mainly BaAl2Si2, Si, and Al) are included in the samples with high Al contents. The actual Al content x determined by EDX ranges from approximately 14 to 15. The absolute value of the Seebeck coefficient increases and the electrical conductivity decreases as the Al content increases. The changes in Seebeck coefficient and electrical conductivity are explained in terms of the dependence of the carrier concentration on the Al content. The elastic constants and the CTE of the samples depend weakly on the Al content. Some of the properties are compared with reported data of single crystals of Ba8Al16Ge30, Ba8Ga16Ge30, Sr8Ga16Ge30, silicon, and germanium as standard references. The effective mass, Hall carrier mobility, and lattice thermal conductivity, which govern the transport properties, are determined to be ~ 2.4m 0, ~ 7 cm2 V?1 s?1, and ~ 1.3 W m?1 K?1, respectively, for actual Al content x of about 14.77. The thermoelectric figure of merit ZT is estimated to be about 0.35 at 900 K for actual Al content x of about 14.77.  相似文献   

19.
The possibility of using an n-type Bi2?x SbxTe3 solid solution in thermoelectric refrigerators at T<200 K is considered. It is shown that, if the material under consideration is optimized for the above temperature region, the temperature dependence of the Seebeck coefficient α becomes less pronounced, and the crystal-lattice thermal conductivity κL decreases as compared to what is observed in a conventional n-Bi2Te3?y Sey solid solution. These factors and a high mobility of charge carriers μ0 bring about an increase in the parameter β ~ ZT, where Z is the thermoelectric efficiency.  相似文献   

20.
This study focuses on Sb-doped Mg2(Si,Sn) thermoelectric material. Samples were successfully fabricated using a hybrid synthesis method consisting of three different processes: induction melting, solid-state reaction, and a hot-press sintering technique. We found that the carrier concentration increased with Sb content, while the Seebeck coefficient exhibited a decreasing trend. Sb doping was shown to improve the power factor and thermoelectric figure of merit compared with the undoped material, yielding a peak figure of merit (ZT) of ~0.55 at 620 K, while leaving the band gap of Mg2Si0.7Sn0.3 almost unchanged.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号