共查询到18条相似文献,搜索用时 62 毫秒
1.
该论文提出了基于改进粒子群优化的BP算法. 在该算法中,通过对粒子群优化算法中的惯性权重的计算方法的改进,同时利用改进的PSO算法替代了BP算法中的梯度下降算法,使得改进后的算法具有不易与陷入局部极小等优点. 并将该算法利用在预测气温上,实验证明: 改进后的算法在预测模型上能够取得较好的预测效果,提高预测精度. 相似文献
2.
为了提高粒子群优化算法的性能,提出了一种惯性权值调整的改进粒子群优化算法,该算法的惯性权值满足不同。粒子对全局和局部搜索能力的不同需求,每次迭代后根据适应度值对惯性权值做相应的调整。对4个典型的测试函数进行仿真表明,该算法比标准粒子群优化算法有更好的收敛性和更快的收敛速度,改善了优化性能。 相似文献
3.
一种改进粒子群优化算法 总被引:3,自引:1,他引:3
朱玉平 《计算机技术与发展》2008,18(11)
为了提高粒子群优化算法的性能,提出了一种惯性权值调整的改进粒子群优化算法,该算法的惯性权值满足不同粒子对全局和局部搜索能力的不同需求,每次迭代后根据适应度值对惯性权值做相应的调整.对4个典型的测试函数进行仿真表明,该算法比标准粒子群优化算法有更好的收敛性和更快的收敛速度,改善了优化性能. 相似文献
4.
针对神经网络权值选取不精确的问题,提出改进的粒子群优化算法结合BP神经网络动态选取权值的方法。在改进的粒子群优化算法中,采用动态惯性权重,并且认知参数与社会参数相互制约。同时,改进的粒子群优化算法结合差分进化算法使粒子拥有变异与交叉操作,保持粒子的多样性。基于改进的粒子群优化算法与BP神经网络,构建IPSONN神经网络模型并运用于酒类品质的预测。实验分别从训练精度、正确率及粒子多样性三方面验证了IPSONN模型的有效性。 相似文献
5.
6.
综合改进的粒子群神经网络算法 总被引:5,自引:0,他引:5
粒子群优化算法是一种解决非线性、不可微和多峰值复杂优化问题的优秀算法,但该算法在进化后期容易出现速度变慢以及早熟的现象;BP神经网络的学习算法是基于梯度下降这一本质的,因此存在着容易陷于局部极小值,收敛速度慢,训练时间长等问题.针对上述现象,对粒子群优化算法进行了增强粒子多样性和避免种群陷入早熟两个方面的改进,并提出了一种基于改进算法的粒子群神经网络算法,最后通过在IRIS数据集上进行的仿真实验验证了改进的有效性. 相似文献
7.
崔乃丹 《自动化技术与应用》2022,41(4):148-150
本次通过基于粒子群优化算法与BP神经网络相结合的方式对高铁客运量进而预测,利用粒子群优化算法对BP神经网络进行优化与训练,通过经过改进的BP神经网络对高铁客运量进行预测.经实验研究发现,本次研究所提出的预测算法比常规BP神经网络模型预测精度更高,在样本数据量较少的情况下有明显的应用优势. 相似文献
8.
粒子群算法是一类智能优化搜索算法,该算法初期收敛很快,但后期易陷入局部最优点。为了提高粒子群算法的性能,提出一种改进线性惯权粒子群算法。该算法中惯性权值采用线性递减线性递增策略,其增减受粒子群的聚集度影响。对两个典型的测试函数进行仿真表明,该算法的搜索效率和精度优于一般的粒子群算法和惯性权值线性递减粒子群算法,同时具有较好的收敛稳定性。 相似文献
9.
目前BP神经网络是一种有效的预测方法,但在实际应用当中存在着一些自身的缺点,为此提出了一种基于改进粒子群算法的BP神经网络。通过动态调整粒子群算法中的惯性因子ω,有效地增强了算法对非线性问题的处理能力,同时提高了算法的收敛速度和搜索全局最优值的能力。建立改进后的BP网络模型,通过该模型和逐步回归方法对某市降水量进行实例分析。分析结果表明,改进后的BP网络模型具有较高的准备预报能力和稳定性。 相似文献
10.
11.
12.
13.
针对飞行器航路规划问题,提出了一种改进粒子群算法.在标准粒子群算法的基础上,对惯性权重系数进行了非线性的调整,对学习因子进行线性和非线性的优化,并引入遗传算法中的交叉算子,将较好粒子与较差粒子进行交叉,保证了种群的多样性,从而提高算法的全局搜索能力.为了验证算法的可行性与有效性,对其进行仿真测试.实验结果表明,与标准粒子群算法、线性惯性权重相比,改进的粒子群算法表现出较强的全局搜索能力和较好的收敛性. 相似文献
14.
粒子群算法针对速度变量的调节不够精确,算法在迭代过程中容易陷入局部最优,函数目标值的精度比较低。为了得到更加精准的目标值,提出一种改进的粒子群算法,对粒子群算法的惯性权值参数进行动态调整。算法将惯性权值参数设置为由粒子位置、个体最优位置和全局最优位置影响的可变参数组,通过各个位置之间的距离来控制参数的改变。该改进粒子群算法针对每一个粒子的每一维度都设计其对应的惯性权值参数。该改进算法经过和其它算法进行比较测试,结果显示改进的算法得到的解值更加精准。 相似文献
15.
16.
17.
针对烧结配料系统中的非线性、复杂性和相关性,基于BP神经网络建立烧结配料的预测模型,并采用粒子群算法对预测模型参数进行优化.为了克服粒子群算法的局部收敛性,在迭代过程中,根据迭代次数对惯性权重进行动态非线性调整,从而提高算法的搜索能力.仿真结果表明,所提出的改进粒子群算法与传统的粒子群算法比较,收敛速度快、迭代次数少、... 相似文献
18.
在各类优化问题的解决过程中,群智能优化算法的局部搜索与全局搜索性能都起着重要的作用。在粒子群优化算法中,惯性权值的引入对粒子群算法的收敛性与稳定性都具有一定的影响。因此,在分析现有权值递减策略的基础上,提出一种基于单个粒子适应值的权值修正策略,区别对待同次迭代中适应值好与差的粒子,通过不同的权值赋值策略,以充分发挥各粒子的优势,以增强全局搜索和跳出局部最优的能力。通过对标准测试函数所做的对比实验,该策略可以使粒子在搜索初期获得更好的多样性,使粒子具有更强的摆脱陷入局部极值点的能力;在搜索末期可以加快粒子收敛速度以提高粒子群优化算法的快速性能。改进算法有效减少了早熟的发生,提高了粒子的收敛性能,取得了比较满意的仿真结果。 相似文献