首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
在实际的人脸识别中,给定的训练图像往往存在遮挡和噪声,导致稀疏表示分类(SRC)算法的性能下降。针对上述问题,提出一种基于结构化低秩表示(SLR)和低秩投影的人脸识别方法--SLR_LRP。首先通过SLR对原始训练样本进行低秩分解得到干净的训练样本,根据原始训练样本和恢复得到的干净训练样本得到一个低秩投影矩阵;然后将测试样本投影到该低秩投影矩阵;最后使用SRC对恢复后的测试样本进行分类。在AR人脸库和Extended Yale B人脸库上的实验结果表明,SLR_LRP可以有效处理样本中存在的遮挡和像素破坏。  相似文献   

2.
针对人脸识别中的图像存在噪声等情况,提出基于鉴别性低秩表示及字典学习的算法。使用鉴别性低秩子空间恢复算法(discriminative low-rank representation, DLRR)获得类别间尽可能独立且干净的训练样本,然后通过引入基于Fisher准则的字典学习(Fisher Discrimination Dictionary Learning, FDDL)方法得到结构化字典,其子字典对对应的类有较好的表示能力,约束编码系数具有较小类内散列度和较大类间散列度。最后对测试样本稀疏线性表示时正确类别的样本贡献更大。在标准人脸数据库上的实验结果表明该算法有较好性能。  相似文献   

3.
针对训练样本和测试样本均受到严重的噪声污染的人脸识别问题,传统的子空间学习方法和经典的基于稀疏表示的分类(SRC)方法的识别性能都将急剧下降。另外,基于稀疏表示的方法也存在算法复杂度较高的问题。为了在一定程度上缓解上述问题,提出一种基于判别低秩矩阵恢复和协同表示的遮挡人脸识别方法。首先,低秩矩阵恢复可以有效地从被污损的训练样本中恢复出干净的、具备低秩结构的训练样本,而结构非相关性约束的引入可以有效提高恢复数据的鉴别能力。然后,通过学习原始污损数据与恢复出的低秩数据之间的低秩投影矩阵,将受污损的测试样本投影到相应的低维子空间,以修正污损测试样本。最后,利用协同表示的分类方法(CRC)对修正后的测试样本进行分类,获取最终的识别结果。在Extended Yale B和AR数据库上的实验结果表明,本文方法对遮挡人脸识别具有更好的识别性能。  相似文献   

4.
针对基于稀疏表示分类器(Sparse Representation-based Classification,SRC)的人脸识别方法用单位阵作误差字典不能很好地描述人脸图像噪声和误差以及由于训练样本不足可能造成字典不完备的问题,提出一种基于低秩恢复稀疏表示分类器(Low Rank Recovery Sparse Representation-based Classification,LRR_SRC)的人脸识别方法。该方法首先采用低秩矩阵恢复(LRR)算法将训练样本矩阵分解为一个低秩逼近矩阵和一个稀疏误差矩阵。然后,由低秩逼近矩阵和误差矩阵组成字典。在此基础上,得到测试样本在该字典下的稀疏表示。更进一步,基于测试样本的稀疏表示系数和字典,对测试样本进行类关联重构,并计算其类关联重构误差。最后,基于类关联重构误差,完成测试样本的分类识别。在YaleB和CMU PIE人脸数据库上的实验结果表明,提出的基于LRR_SRC的人脸识别方法具有较高的识别率。  相似文献   

5.
6.
典型相关分析(CCA)是一种经典的多特征提取算法,它能够有效地抽取两组特征之间的相关性,现已被广泛应用于模式识别。在含噪声数据情况下,CCA的特征表示性能受到限制。为了使CCA更好地处理含噪声数据,提出一种基于低秩分解的典型相关分析算法——鲁棒典型相关分析(robust canonical correlation analysis,RbCCA)。RbCCA首先对特征集进行低秩分解,得到低秩分量和噪声分量,以此分别构建对应的协方差矩阵。通过最大化低秩分量的相关性,同时最小化噪声分量的相关性来建立判别准则函数,进而求取鉴别投影矢量。在MFEAT手写体数据库、ORL和Yale人脸数据中的实验结果表明,在包含噪声的情况下,RbCCA的识别效果优于现有的典型相关分析方法。  相似文献   

7.
标准的低秩矩阵恢复算法是把原始数据集分解成一组表征基和与此相应的稀疏误差,并以此分解对原始数据建模。受Fisher准则启发,文中提出基于带有Fisher判别准则的低秩矩阵恢复算法,在有监督学习模式下对低秩矩阵进行恢复,即当所有的标签信息都知道的情况下考虑类内散度和类间散度。文中所构造的模型可利用增广拉格朗日乘子法求解,并通过对标准的低秩矩阵模型增加判别性提高性能,利用文中算法所学习到的表征基使类内结构相关,而类间相互独立。在人脸识别问题上的仿真实验表明该算法的有效性。  相似文献   

8.
针对 人脸图像中表情变化、遮挡、光照的问题,本文提出了一种新颖的基于低秩分块稀疏表示的 人脸识别算法。该算法采用了一种新的结构不相关的低秩矩阵恢复方法,同时采用离散余弦 变换方法联合处理人脸图像中遮挡、掩饰和光照的问题,对处理过的图片采用一种独特的重 叠分块方法,利用冗余信息有效地提高了算法的识别率。在分类阶段,利用Alignment pool ing的方法,有效地提高了识别速度。该算法在标准人脸数据库上进行了多次实验,实验结 果表明:与现有人脸识别算法相比,算法的识别准确率和计算效率都得到了一致提高。  相似文献   

9.
目前的人脸识别算法常常忽视训练过程中噪声的影响,特别是在训练数据和待测数据都受到噪声污染的情况下,识别性能会明显下降。针对含有光照变化、伪装、遮挡及表情变化等较大噪声的人脸识别问题,提出了一种基于低秩子空间投影和Gabor特征的稀疏表示人脸识别算法。该算法首先通过低秩矩阵恢复算法得到训练样本的潜在低秩结构和稀疏误差结构;然后利用主成分分析法找到低秩结构的Gabor特征所在低秩子空间的变换矩阵;再通过变换矩阵将所有样本的Gabor特征向量投影到低秩子空间上,在该低秩子空间上使用稀疏表示分类算法进行最终的分类识别。在Extend Yale B和AR数据库上的实验表明,新算法具有较高的识别率和较强的抗干扰能力。  相似文献   

10.
传统的基于低秩矩阵恢复的图像去噪算法只对低秩部分进行约束,当高斯噪声过大时,会导致去噪不充分或细节严重丢失。针对此问题,提出了一种新的鲁棒的图像去噪模型。该模型在原有的低秩矩阵核范数约束的基础上引入高斯噪声约束项,此外为了提高低秩矩阵的低秩性和稀疏矩阵的稀疏性,引入了加权的方法。为了考察方法的去噪能力,选取了不同参数类型的混合噪声图像进行仿真,并结合峰值信噪比、结构相似度评价标准与传统的基于低秩矩阵恢复的图像去噪算法进行对比。实验结果表明,加权低秩矩阵恢复的混合噪声图像去噪算法能增加低秩矩阵的低秩性和稀疏矩阵的稀疏性,在保证去噪效果的同时,保留了图像的细节信息,具有更佳的视觉效果,同时,客观评价指标均有所提高。  相似文献   

11.
由于数据本身的自表示特性,当给定一个字典时,同类样本理论上具有相似的线性表示,所以所有样本的表示矩阵具有块对角结构。但在由于样本中存在的各种污损,数据子空间结构可能会被破坏。为了解决这一问题,很多基于低秩表示的恢复算法相继提出,但是仅有对表示的低秩约束并不能很好地将原始训练样本转化到理想的低秩子空间。因此,提出了一个鲁棒的结构化低秩恢复算法(Robust Structured Low-Rank Recovery,RSLRR)。RSLRR利用理想的标签矩约束阵促进低秩表示趋近于块对角结构,以此挖掘更多的潜在结构信息。同时,为了减少严格的趋近0-1标签矩阵造成的结构信息损失,RSLRR增加了一个正则化项用来减弱非块对角系数的负面影响。通过RSLRR算法可以得到一个判别的结构化字典,并可计算出一个低秩投影矩阵将所有测试样本有效的投影到其相应的低秩子空间。在AR和CMU PIE数据库上的实验结果验证了RSLRR算法的有效性和鲁棒性。  相似文献   

12.
特征提取算法通常只单独用到了数据的局部结构或者整体结构,这样将得不到全局最优投影矩阵,且投影矩阵不具备很好的可解释性.为此,提出了一种基于邻域图的低秩投影学习算法.该算法通过在数据的重构残差上施加图约束来保持数据的局部结构,同时引入低秩项来保持整体结构;算法利用L2,1范数行稀疏的性质对投影矩阵进行约束,这样可以剔除冗...  相似文献   

13.
针对人脸图像不完备的问题和人脸图像在不同视角、光照和噪声下所造成训练样本污损的问题,提出了一种快速的人脸识别算法--RPCA_CRC。首先,将人脸训练样本对应的矩阵D0分解为类间低秩矩阵D和稀疏误差矩阵E;其次,以低秩矩阵D为基础,得到测试样本的协同表征;最后,通过重构误差进行分类。相对于基于稀疏表征的分类(SRC)方法,所提算法运行速度平均提高25倍;且在训练样本数不完备的情况下,识别率平均提升30%。实验证明该算法快速有效,识别率高。  相似文献   

14.
低秩稀疏分解是可应用于视频监控的一种视频分析方法,与满足Nyquist定理的采样信号相比,压缩感知观测信号的低秩稀疏分解难度更大。借鉴在低秩稀疏分解时将信号投影到其低秩部分的正交空间方法,提出先压缩观测再投影与先投影再压缩观测两种不同的压缩观测与投影方法,推导出每种方法的投影与压缩观测合并算子,分别对稀疏前景与低秩背景进行压缩感知重构,实现时变稀疏信号压缩观测的低秩稀疏分解。由于背景的缓慢变化会使低秩矩阵的正交空间发生改变,应用结构相似度来判断相邻帧低秩矩阵的变化情况,并估计该正交空间是否需要更新。实验结果表明,与SpaRcs方法相比,该方法能够在较低的压缩采样率下实现更精确的信号低秩背景与稀疏前景的直接分离重构,每帧图像压缩感知重构结果的峰值信噪比最多能够提高2 dB左右。  相似文献   

15.
针对浓雾场景下图像目标信息被严重遮挡,现有雾天图像清晰化算法难以取得较好去雾效果的问题,基于低秩分解并结合像素置乱提出一种新的图像去雾方法。根据低秩分解理论和散射介质成像模型,将雾天降质图像看作两部分的叠加:一部分是具有低秩特性的雾化背景,另一部分是具有高秩特性的清晰目标场景。由于目标场景本身具有局部相关性和非局部相似性而含有一定程度的低秩成分,直接进行低秩分解会导致一部分目标场景被当作雾化背景去除,因此对原始雾天图像进行像素置乱以破坏场景本身的相关性,同时雾化背景因其全局缓变特性仍保持低秩属性,从而在进行低秩分解时最大限度地保留场景信息。最后,将高秩成分进行像素归位,获得去雾后的复原场景。实验结果表明,与暗通道先验、DehazeNet等主流图像去雾方法相比,该方法针对O-HAZE数据集中浓雾图像的去雾具有更好的表现,在有效去除浓雾的同时,不会产生大面积色偏现象。  相似文献   

16.
低秩表示(Low-Rank Representation,LRR)在探索数据中的低维子空间结构方面具有良好的效果,近年来引起了人们的广泛关注.然而,传统的LRR方法通常使用欧氏距离来度量样本的相似性,仅考虑相邻样本两两之间的距离信息,对于具有流形结构的数据往往不能反映其固有的几何结构.最近的研究表明,概率激励距离测量(...  相似文献   

17.
在智能电网背景下,准确估算和预测电力负荷已成为电网电力规划工作的重要先决条件,对电网安全、经济运行具有重要意义。针对电力负荷数据的周期波动与非周期影响,提出一种基于双图正则非负低秩分解的电力负荷短期预测方法。该方法利用历史数据构造电力负荷时空矩阵,并对该矩阵进行鲁棒非负低秩矩阵分解,以同时获取电力负荷的周期性模式与非周期影响。在此基础上融入电力负荷的空间和时间相关性以进一步优化矩阵分解结果,最终通过矩阵恢复获取电力负荷的短期预测。该方法从电网时空整体预测电力负荷趋势分析并填补缺失,同时导出了有效的学习算法。实验分析表明,与相关方法相比,所提方法在电力负荷短期预测的多项评价标准下均取得了更好的准确性和鲁棒性。  相似文献   

18.
近年来,链接预测成为社会网络和其他复杂网络链接挖掘中的热门研究领域.在链接预测问题中,经常会存在用来提高预测效果的附加数据信息源,这些数据可以用于预测网络中的链接是否存在.在所有的数据源中,最主要的数据源在链接预测中起到最重要的作用.因此,设计具备健壮性的算法用于充分利用所有数据源的信息来进行链接预测十分重要,算法还需要平衡主数据源和附加数据源的关系,使得链接预测能够获得更好的效果.同时,传统基于拓扑结构计算的无监督算法大多数通过计算网络中节点间的评分值来解决预测链接存在可能性的问题,这些方法能够获得有效的结果.在链接预测方法中,最关键的一步是构建准确的输入矩阵数据.由于许多真实世界数据集存在噪声,这导致降低了大多数链接预测模型的效果.提出了一种新的链接预测方法,通过多个数据源的融合,兼顾地利用了主数据源的信息和其他附加数据源的信息.接着,主数据源和其他附加数据源被用于构建一个低噪声且更准确的矩阵,而新的矩阵被用于作为传统无监督拓扑链接预测算法的输入.根据在多个真实世界数据上的测试结果,在多源数据集上进行对比实验,提出的基于低秩和稀疏矩阵分解的多源融合链接预测算法相对于基准算法能够获得更好的效果.  相似文献   

19.
基于奇异值特征提取的彩色人脸识别*   总被引:2,自引:0,他引:2  
基于彩色图像的四元数模型,将彩色人脸图像视为一个模板直接处理,并首次将奇异值向量应用到彩色人脸识别中.首先证明了彩色图像的奇异值向量具有代数和几何不变性;然后将其提取为图像的代数特征并应用到人脸识别中.实验表明该方法的识别率为90%左右,是一种有效的彩色人脸识别方法.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号