首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
采用液固分离工艺制备高SiC体积分数Al基电子封装壳体(54%SiC,体积分数),借助光学显微镜和扫描电镜分析壳体复合材料中SiC的形态分布及其断口形貌,并测定其物理性能和力学性能。结果表明:SiCp/Al壳体复合材料中Al基体相互连接构成网状,SiC颗粒均匀镶嵌分布于Al基体中。复合材料的密度为2.93 g/cm3,致密度为98.7%,热导率为175 W/(m·K),热膨胀系数为10.3×10-6K-1(25~400°C),抗压强度为496 MPa,抗弯强度为404.5 MPa。复合材料的主要断裂方式为SiC颗粒的脆性断裂同时伴随着Al基体的韧性断裂,其热导率高于Si/Al合金的,热膨胀系数与芯片材料的相匹配。  相似文献   

2.
含高体积分数SiCp的铝基复合材料制备与性能   总被引:13,自引:7,他引:13  
以电子封装为应用对象, 通过合理选择一定粒径分布的SiC颗粒, 采用挤压铸造方法制备了SiC颗粒体积分数分别为50%, 60%和70%的3种SiCp/Al复合材料. 材料组织致密, 颗粒分布均匀. 复合材料的平均线热膨胀系数(20~100 ℃)随SiC含量的增加而降低, 在8.3×10-6~10.8×10-6/℃之间, 与Kerner模型预测值相符. 复合材料比强度和比刚度高, 均可以满足电子封装应用的技术要求.  相似文献   

3.
热处理对高体积分数SiCp/Cu热膨胀性能的影响   总被引:1,自引:1,他引:0  
采用挤压铸造法制备了SiC颗粒体积分数分别为50%、55%和60%的SiCp/Cu复合材料,并分析测试了体积分数和热处理状态对复合材料热膨胀性能的影响规律。显微组织观察表明:复合材料的组织致密,SiC颗粒分布均匀。热膨胀性能测试表明:铸态复合材料的平均线热膨胀系数(20~100℃)介于8.8~9.9×10-6/℃之间,且随SiC含量的增加而降低,实验值与Kerner模型预测值相符。退火处理可以减小基体中的热残余应力,有助于降低复合材料的热膨胀系数,退火态复合材料的热膨胀系数实验值与Turner模型预测值相符。  相似文献   

4.
针对国内目前SiCp/Al在产业化中存在的诸多问题,选用W20和W60的β-SiC粉体,采用模压成型制备SiC预制体,并通过底部真空负压浸渗工艺制备了致密度为96%~98%、体积分数为55%~72%的β-SiCp/Al复合材料.XRD、SEM、CT和CTE测试分析表明:所制备的复合材料中存在MgAl2O4尖晶石相,没有发现Al4C3脆性相;复合材料组织均匀,存在少量浸渗缺陷,孔洞较少;SiC体积分数为72%的复合材料在常温热度下的热膨胀系数为6.91×10-6/K,热导率为164.8 W/(m?K),而SiC体积分数为65%的复合材料的热膨胀系数为7.31×10-6/K,热导率为172.7 W/(m?K).  相似文献   

5.
以F220、F500、F600这3种粒度的磨料级绿SiC混合粉为原料制成预制件,然后将其分别在500、1 100和1 200℃煅烧后无压熔渗液态铝合金制备SiC体积分数为62%~64%的铝基复合材料SiCp/Al;研究预制件煅烧温度对SiCp/Al复合材料结构和性能的影响。结果表明:不同温度下煅烧的SiC预制件渗铝后,都能获得结构均匀致密的复合材料;高温煅烧使SiC颗粒氧化形成骨架,导致强度从305 MPa降至285~245 MPa;SiC颗粒表面氧化转变成的SiO2薄膜增加复合材料中的陶瓷含量,使复合材料的热膨胀系数进一步降低;当SiC预制件中SiO2薄膜质量分数达到3.7%~6.7%时,SiCp/Al复合材料界面热阻增大4~6倍,复合材料热导率从184 W/(m.℃)降至139~127 W/(m.℃)。  相似文献   

6.
SiCp/Al复合材料导热性能的数值模拟   总被引:1,自引:1,他引:0  
采用有限元方法对SiCp/Al复合材料的导热性能进行了数值模拟,建立了平面四颗粒和多颗粒随机分布复合材料测试模型,研究了颗粒体积分数、颗粒粒径、颗粒形貌以及基体对复合材料导热性能的影响.结果表明,SiCp/Al复合材料的热导率随SiC颗粒体积分数增加而下降;复合材料热导率随颗粒粒径的增大而稍有变化;球形颗粒复合材料热导率高于方形颗粒复合材料热导率,ZL101基体复合材料热导率高于ZL102基体复合材料热导率.  相似文献   

7.
采用放电等离子烧结技术制备高体积分数SiC_p/Al复合材料,研究SiC颗粒级配对复合材料微观结构、热和力学性能的影响。结果表明:放电等离子烧结制备的SiC_p/Al复合材料由SiC和Al两相组成,SiC颗粒基本呈均匀随机分布、层次明显,SiC颗粒与Al基体界面结合强度高且无Al_4C_3等脆性相生成。在双粒径级配的SiC_p/Al复合材料中,SiC体积分数从50%增加到65%时,其相对密度从99.93%下降到96.40%;其中,当SiC体积分数为60%时,复合材料的相对密度、热导率、平均热膨胀系数(50~400℃)和抗弯强度分别为99.19%、227.5W/(m·K)、9.77×10~(-6) K~(-1)和364.7MPa。  相似文献   

8.
复杂形状SiCp/Al复合材料零件的制备与性能   总被引:6,自引:2,他引:6  
采用粉末注射成形制备SiC预成形坯和铝合金无压熔渗相结合的技术,成功制备出高体积分数且形状复杂的SiCp/Al复合材料零件.研究了烧结工艺对SiC预成形坯开孔率和强度的影响规律,并对所制备的复合材料的热物理性能进行了评价.结果表明:经1 100℃真空烧结8 h的SiC预成形坯开孔率可以达到99.6%,抗压强度为0.57 MPa所制备的57%SiCp/Al复合材料相对密度为98.7%,热膨胀系数为7.5×10-6℃-1,与GaAs、BeO的接近,热导率为1.65×105W/K,与传统Cu(15%)/W相当,是柯伐合金的10倍,在密度上接近Al,不到Cu/W的1/5.由综合比较可以看出,采用注射成形与无压熔渗相结合的制备工艺,可以低成本制备综合性能优异的高体积分数SiCp/Al复合材料.  相似文献   

9.
采用粉末冶金法制备体积分数为50%、不同SiC颗粒尺寸(平均尺寸为23、38和75μm)的Al/SiC复合材料。研究SiC颗粒尺寸和退火对Al/SiC复合材料组织和性能的影响。结果表明,在所得复合材料中,SiC颗粒均匀分布在铝基体中。粗Si C颗粒能提高材料的热膨胀系数和热导率,细SiC颗粒降低材料的热膨胀系数和提高抗弯强度。经过400°C、6 h退火后,SiC颗粒的尺寸和形态没有发生变化,但材料的热膨胀系数和抗弯强度降低,热导率增大。退火后,SiC颗粒尺寸为75μm复合材料的热导率为156 W/(m·K),热膨胀系数为11.6×10~(-6)K~(-1),抗弯强度为229 MPa。  相似文献   

10.
采用凝胶注模法制备SiC预制件用于无压熔渗液态铝合金实现60~67 vol%SiCp/Al复合材料的近净成形制备,研究了碳化硅颗粒级配及热处理对复合材料力学和热学性能的影响.结果表明:不同粒度的SiC粉体在铝基体中分布均匀,无明显偏聚现象;采用较细的SiC颗粒级配和退火处理都能有效提高复合材料强度;粗颗粒级配能增大SiC在复合材料中的体积分数,有利于导热性能的提高和热膨胀系数的降低;SiCp/Al复合材料抗弯强度介于240~365 MPa,室温时热导率介于122~175 W·m-1·℃-1.之间,室温至250℃的平均线热膨胀系数小于7.5×10-6℃-1,满足电子封装的性能要求.  相似文献   

11.
采用真空热压烧结在不同工艺参数下制备SiC颗粒体积分数分别为10%,20%,30%,40%的SiCp/ZL101A复合材料,研究烧结温度、保温时间等工艺参数对SiCp/ZL101A复合材料显微组织的影响以及SiC含量对SiC颗粒在基体ZL101A中分布均匀性的影响,同时对SiCp/ZL101A复合材料界面进行透射电镜显微分析。结果显示,随着烧结温度的增加,组织致密度增加,气孔数量及尺寸减小;保温时间的增加导致复合材料平均晶粒尺寸的增加;随着SiC颗粒体积分数的增加,SiC颗粒在基体ZL101A中分布均匀性变差;固相烧结法制备的SiCp/ZL101A复合材料中没有出现界面反应现象。  相似文献   

12.
用网格堆积法制备SiC多孔陶瓷,以此作为增强体,用无压浸渗工艺制备45%~65%体积分数的SiC/Al基电子封装复合材料,测定25~300 ℃热导率和热膨胀系数.实验结果表明,增强体经高温氧化处理后能显著的改善SiC/Al的浸润性能;提高浸渗温度和延长浸渗时间可以改善浸渍效果,浸渗温度在1 050 ℃,浸渗时间5 h浸渗效果最好;Mg是促进浸渗的有利因素,可有效改善铝在增强体内的渗透深度.该工艺制备的SiC/Al复合材料,热膨胀系数较经典模型计值低,热导率达189 W(m·K),可以较好的满足电子封袋材料的要求.  相似文献   

13.
利用热压烧结工艺制备了含20%~65%SiC(体积分数,下同)颗粒的SiCp/Cu复合材料.在室温到600℃温度范围内测定了复合材料的电阻率.结果表明,随着SiC颗粒含量的增加,SiCp/Cu复合材料的电阻率提高,电阻率渗滤阈值发生在SiCp含量大约55%时;含有20%~35%SiC颗粒的SiCp/Cu复合材料的电阻率随温度的升高而线性增加,表现为铜的电导特征;而含有50%~65%SiC颗粒的SiCp/Cu复合材料的电阻率随温度的升高在225~500℃温度范围内明显偏离线性增加关系.  相似文献   

14.
采用铝液无压浸渗工艺制备了SiCP/Al复合材料,研究了基体金属、颗粒粒径、颗粒体积分数、颗粒形貌对复合材料导热性能的影响。结果表明,以ZL101为基体的该复合材料的热导率高于以纯铝1060为基体的热导率,以纯铝1060为基体的SiCP/Al复合材料存在Al4C3。SiCP/Al复合材料的热导率随SiC颗粒粒径增大而增大,而颗粒体积分数越高,复合材料的热导率越低。近球形SiC颗粒增强复合材料的热导率高于不规则形颗粒增强复合材料的热导率。  相似文献   

15.
为了研究微米级碳化硅颗粒(SiCp)尺寸和含量对中体积分数SiCp增强铝基复合材料强化机制的影响,用粉末冶金工艺制备SiCp体积分数为30%~40%,颗粒尺寸为3~40μm的SiCp/2024Al复合材料,利用TEM,万能材料试验机等对材料微观结构和拉伸性能进行了研究。结果表明,复合材料的抗拉强度和硬度均随着SiC颗粒尺寸的增大而减小,随体积分数的增加而增大。复合材料的强化是由多种强化机制协同作用的结果,SiC颗粒尺寸主要通过位错强化和细晶强化显著影响对复合材料的强化效果。  相似文献   

16.
采用粉末冶金法制备出不同SiC颗粒体积分数(30%、35%和40%)的SiCp/Al复合材料。采用MMU-5GA微机控制真空高温摩擦磨损试验机对比研究SiCp/Al复合材料在不同体积分数以及T6热处理前后情况下平均摩擦因数和磨损率的变化,通过扫描电镜分析了SiCp/Al复合材料表面磨损形貌,探讨了摩擦磨损机理。试验结果表明,SiC颗粒体积分数在30%~40%变化时,随其体积分数增加耐磨性下降。SiC颗粒体积分数在30%~35%范围内,SiC颗粒与基体结合较好,SiC颗粒作为硬质点起到抵抗磨损和限制基体合金塑性变形产生磨损的双重作用;但SiC含量过多时,颗粒与基体的结合不紧密,磨损时颗粒极易脱落,复合材料耐磨性降低;T6热处理后复合材料的平均摩擦因数和磨损率均降低,这是由于热处理后试样强度及硬度提高,从而提高了试样的耐磨性;常温下复合材料在磨损初期的磨损机理主要以磨粒磨损为主,而在磨损期则为磨粒磨损与剥落磨损共存。  相似文献   

17.
采用放电等离子烧结(SPS)技术制备不同Si含量的电子封装用Si/Al复合材料,测试复合材料的性能,包括密度、热导率、热膨胀系数及弯曲强度;进行成分及断口分析,研究Si含量对Si/Al复合材料微观组织及热、力学性能的影响规律。结果表明:Si/Al复合材料由Si、Al组成,Al均匀分布于Si晶粒之间;随着Si含量的降低,Si/Al复合材料的相对密度不断增大,当Si含量为50%(体积分数)时,复合材料的相对密度达到98.0%;复合材料的热导率、热膨胀系数及弯曲强度均随着Si含量的增加而减小,当Si含量为60%(体积分数)时,复合材料具有最佳的热导率、热膨胀系数及强度匹配。  相似文献   

18.
利用粉末冶金法制备了WC颗粒体积分数分别为8%、11.8%、16.7%的WCp/2024Al复合材料,采用扫描电子显微镜、热膨胀分析仪、热导率测试仪等多种手段研究不同WC体积分数、挤压比和热处理对复合材料热膨胀系数(CTE)、热导率和微观结构的影响。结果表明:复合材料的热膨胀系数随WC体积分数的增大而明显降低,随挤压比的增大而提高,经过T4态热处理后,复合材料内应力的降低和第三相的析出导致其热膨胀系数降低,热膨胀系数的实测值与kermer模型的计算值相近。复合材料的热导率随WC体积分数的增大而降低。  相似文献   

19.
采用SiCp预制坯成形及铝液无压浸渗法相结合的工艺,实现了SiCp /Al复合材料的近净成形制备.研究了造孔剂含量对SiCp预制坯的孔隙率、尺寸变化及其复合材料相对密度的影响.测试了SiCp /Al复合材料的热物理性能.结果表明,当造孔剂含量大于12%时,随造孔剂含量增加,SiCp预制坯的孔隙率增加,SiCp /Al复合材料的热导率和热膨胀系数增大明显.造孔剂的挥发气体的膨胀力导致SiCp预制坯尺寸变化.当造孔剂含量为18%时,SiCp /Al复合材料相对密度最大.  相似文献   

20.
采用理论计算与实验相结合的方法对金刚石混杂SiC/Al复合材料的热物理性能进行研究,采用微分有效介质(DEM)理论和扩展的Turner模型分别计算金刚石混杂SiC/Al复合材料的热导率和热膨胀系数。从金刚石混杂SiC/Al复合材料的微观组织可以看到SiC颗粒与Al之间结合较紧密,金刚石颗粒与Al之间结合不紧密。金刚石混杂SiC/Al复合材料的热物理性能的实验结果与理论计算趋势一致。当金刚石颗粒与SiC颗粒的体积比为3:7时,混杂SiC/Al复合材料的热导率和热膨胀系数分别提高了39%和30%。因此,当在复合材料中加入少量金刚石颗粒时,其热物理性能得到显著提高,而复合材料的成本略有提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号