首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
测试了AB3型贮氢合金La0.67Mg0.33(NiCo)3铸态与快淬态的电化学性能,用XRD和SEM测试了合金的微观结构,研究了快淬对AB3型贮氢合金电化学性能的影响.结果表明,快淬使合金的放电容量降低,对合金的活化性能没有明显影响;快淬降低了合金的容量衰减率,提高了合金的循环寿命,其主要原因是快淬使合金的晶粒显著细化.铸态和快淬态合金均具有多相结构,包括斜六面体的(La,Mg)Ni3相,六方的LaNi5相及少量的LaNi2相.快淬使合金中的LaNi2相含量增加,这是快淬使合金放电容量下降的一个主要原因.  相似文献   

2.
La-Mg-Ni系A2B7型合金由于其高的放电容量被认为是最具希望的Ni-MH电池负极材料,然而,低的电化学循环稳定性制约着合金的实际应用。为了改善La-Mg-Ni系A2B7型合金的电化学贮氢性能,用RE(RE=Nd,Sm,Pr)部分替代合金中的La,用感应熔炼及退火工艺制备了La0.8-xRExMg0.2Ni3.35Al0.1Si0.05(RE=Nd,Sm,Pr;x=0,0.2)电极合金。为了抑制Mg在熔炼过程中的挥发,熔炼过程中采用氦气作为保护气氛。用X射线衍射(XRD)和扫描电镜(SEM)分析了铸态及退火态合金的微观结构,并测试了铸态及退火态合金的电化学贮氢性能,比较了不同稀土元素替代La对合金电化学性能的影响。结果表明,铸态及退火态合金包含两个主相,具有Ce2Ni7型结构的(La,Mg)2Ni7相以及Ca Cu5型结构的La Ni5相。RE(RE=Nd,Sm,Pr)部分替代La未影响合金的相组成,但使合金的相含量发生明显改变。此外,元素替代使铸态及退火态合金的组织明显细化。RE(RE=Nd,Sm,Pr)部分替代La显著改善了合金的电化学贮氢性能,包括电化学循环稳定性、放电容量及电化学动力学性能。  相似文献   

3.
《稀土》2015,(4)
采用中频感应熔炼-快淬方法制备La15-xSmxFe2Ni76Mn5B2(x=0,2,4,6)型储氢合金。结构分析表明:快淬态La15-xSmxFe2Ni76Mn5B2(x=0,2,4,6)合金为多相结构,主相为La Ni5相,另外还有La3Ni13B2相和(Fe,Ni)相。快淬合金经1173 K保温3小时,而后随炉冷却到室温,随着Sm替代La的量不同,合金的组成相有着不同的变化。电化学测试表明,退火热处理明显提高了合金电极的最大放电容量,改善了合金电极的自放电性能。退火合金电极的高倍率放电能力均低于快淬合金,表明储氢合金电极的电化学动力学性能有所下降。  相似文献   

4.
不同化学计量比稀土镁基贮氢电极合金结构和电化学性能   总被引:3,自引:1,他引:3  
用冷坩锅磁悬浮熔炼的方法制备了不同化学计量比的La0.7Mg0.3(Ni0.85Co0.15)x(x=3.0,3.1,3.2,3.3,3.4,3.5)稀土镁基贮氢电极合金,采用X射线衍射和三电极测试体系研究了合金的相结构和电化学性能。X射线衍射分析结果表明,该系列合金均由(La,Mg)Ni3相、(La,Mg)2Ni7相、LaNi5相及少量杂质相组成,为多相结构;随着化学计量比x的增加,(La,Mg)Ni3相的含量降低,相应LaNi5相的含量增加。电化学测试结果表明,该系列合金的最大放电容量均高于目前已商品化的稀土基AB5型贮氢电极合金的最大放电容量(310~330 mAh.g-1),且当x=3.4时,合金的最大放电容量可达395.4 mAh.g-1,较AB5型合金高约30%,是合金中各相的含量比例较为合适的结果;该系列合金活化性能、倍率放电性能良好,并随着化学计量比x的增加得到进一步改善,这与同时作为贮氢相和催化相的LaNi5相含量的增加有关;在电化学吸放氢循环过程中,合金的循环稳定性较差,有待进一步提高。  相似文献   

5.
研究了球磨添加CeO2对La2Mg17-50%(质量分数,下同)Ni复合合金的相结构和储氢性能的影响,并对合金的形貌和吸放氢性能进行了检测。XRD结果表明,球磨加入CeO2后,在La2Mg17-50%Ni合金中除了Mg2Ni和Ni相外,产生Ce Mg12相。SEM形貌图清晰地看见CeO2附在La2Mg17-50%Ni合金表面上呈白色小颗粒。吸氢动力学性能表明,加入CeO2后,使La2Mg17-50%Ni合金的最大吸氢量从3.298%增加到3.594%。添加CeO2后合金的最佳饱和吸氢温度降为200℃(3 MPa),且吸氢动力学性能提高至1 min内的吸氢量达到3.382%,是其最大吸氢量的94%。然而,CeO2在放氢过程中的积极作用并不明显。  相似文献   

6.
为了探究La0.62Y0.2Mg0.18Ni3.30Al0.20合金具有良好气态吸放氢性能的适宜退火温度,采用XRD、OM分析了铸态及退火合金的相结构及金相组织,用SEM观察了吸放氢前后合金颗粒的表面形貌,用压力-组成-温度(PCT)仪测试了合金的PCT特性以及吸放氢动力学性能。结果表明,900℃退火合金含有LaNi5和(La,Y,Mg)2(Ni,Al)7主相以及Ni3Y残余相。随着退火温度升高,主相不变,但Ni3Y转变成Y2Ni7相;主相晶胞体积先增大后减小,在41~43°衍射角度内,半高宽先减小后增大。与铸态及其他温度退火合金相比,950℃退火合金的组织均匀性较好,吸放氢量、平均吸放氢速率较高,吸放氢的氢压和滞后系数较小。综合比较,实验范围内,合金的适宜退火温度为950℃。  相似文献   

7.
采用感应熔炼方法制备了La0.75Mg0.25Ni3.5-xCox(x=0,0.25,0.75,1)四元贮氢合金,系统地研究了合金B侧Co对Ni部分替代对合金相结构及电化学性能的影响.X衍射(XRD)分析表明,La0.75Mg0.25Ni3.5-xCox由(La,Mg)2Ni-7相(包括Gd2 Co7型高温相和Ce2 Ni7型低温相)组成.此外,随着Co元素的加入,该类合金中出现CaCu5型LaNi5相.电化学测试表明,随Co含量的增加,合金电极活化次数增大,合金电极的最大放电容量增大,合金的最大放电容量由x =0.25时的376.53 mAh/g增加到x=1时的401.62mAh/g,氢扩散系数增大,循环稳定性变差,合金的高倍率放电性能降低,Co含量对合金电极高倍率放电性能HRD值的影响与对合金电极交换电流密度的影响趋势一致,这表明电极合金表面的电化学反应对合金的动力学性能影响更大.  相似文献   

8.
用真空电弧熔炼制备AB2型Sc0.8Zr0.1Y0.1Mn2-xNix(x=0~2.0)储氢合金,利用X射线衍射(XRD)和扫描电镜/能谱分析(SEM/EDS)研究了吸氢前后Ni元素替代Mn对Sc Mn2基合金微观结构的影响,用Sievert装置和热重-差热分析仪(TG/DSC)测试了合金的压力-组成-温度(P-C-T)曲线和吸放氢动力学。研究结果表明,合金铸态组织主要由Laves主相和少量Sc Ni及富Y的第二相组成,其中稀土Sc和Y元素易与Ni形成相应的金属间化合物相。随Ni含量x的增加,合金基体的Laves相组织结构由C14型向C15型转变,x=0时,合金组织基本为C14型Laves相单相组织,x=2.0时,合金组织则完全转变为C15型Laves相单相组织。Ni元素替代Mn对合金的气态吸放氢动力学行为和吸氢P-CT曲线影响较大。随Ni含量的增加,合金吸氢动力学与活化性能逐渐变慢,但其放氢温度明显降低,氢化物生成焓减小(-35.05~-18.72k J·mol-1),储氢平台压升高,储氢容量降低;室温时合金最大储氢量达2.18%(质量分数),储氢后其晶格膨胀率ΔV/V为10.63%~27.32%,吸氢前后合金主相仍保持C14型或C15型相结构,并未发生新的氢致相变,亦无氢致非晶化现象。  相似文献   

9.
陈丕生  王永光  曹慧 《包钢科技》2013,39(6):36-39,53
为了对比研究AB5型与AB3.5型贮氢合金的电化学及动力学特性,以AB5型MlNi3.68Mn0.32Co0.73Al0.27和AB3.5型Ml0.80Mg0.20 (NiMnAlCu)3.6、La0.6 Mg0.4 Ni3.5为研究对象.采用XRD分析了合金的相结构,利用电化学方法测试合金的电化学及动力学特性.结果发现,MlNi3.68 Mn0.32Co0.73Al0.27合金由单相LaNi5相组成,而Ml0.80Mg0.20(NiMnAlCu)3.6、La0.6Mg0.4Ni3.5均有LaNi5相和La2Ni7相组成.AB3.5型合金的放电容量、荷电保持率以及动力学特性高于AB5型合金.  相似文献   

10.
用熔炼-快淬工艺制备La15Fe77-xNixMn5B3(x=55,60,65,70,75)储氢电极合金。采用XRD、SEM、EDS及电化学方法研究合金的组织结构、放氢平台特性和电化学性能。研究结果表明,La15Fe77-xNixMn5B3(x=55,60,65,70,75)合金均为多相结构,主相是LaNi5相,另外还有(Fe,Ni)相和La3Ni13B2相。随Ni含量增加,合金电极的最大放电容量逐渐增加,活化次数明显减少,放氢平台特性变好,高倍率放电性能明显改善。  相似文献   

11.
在0.04 MPa氦气保护下,采用中频感应熔炼炉冶炼了,以少量Y和Cu分别替代部分Mg和Ni的Mg_2Ni型储氢合金,并对合金的结构形貌、相组成、气态吸氢活化与性能进行了系统的研究。研究结果表明:铸态Mg_(22)Y_2Ni_(10)Cu_2合金具有典型的片层状共晶组织特征,其组成相为Mg_2Ni,YMgNi_4和少量的Mg相;合金在3 MPa,300℃下5次吸放氢完全活化,Mg和Mg_2Ni相能够可逆吸放氢,但在首次活化过程中,Mg_2Ni相只有部分转变为Mg_2NiH_4,而Mg相则能够完全转变为MgH_2;同时发现YMgNi_4相虽多次吸放氢循环后,都未发现有非晶化现象发生,表明该相与REMgNi_4(RE=La,Nd)等其他拉弗斯相相比,具有更高的结构稳定性;合金的吸氢动力学曲线用Avrami-Erofofeev法拟合后表明合金吸氢是一维形核和长大过程;测试了合金的平衡压力-浓度等温(PCT)曲线,计算合金的热力学参数为Mg相的氢化焓变(ΔH)和熵变(ΔS)分别为-78.1 kJ·mol~(-1),-133.9J·K~(-1)·mol~(-1),而Mg_2Ni相的氢化ΔH和ΔS则分别为-51.8 kJ·mol~(-1),-103.0J·K~(-1)·mol~(-1),合金的热力学性能明显改善,表明添加Y和Cu对Mg_2Ni型合金的吸氢性能具有一定的催化作用。  相似文献   

12.
用真空熔炼、快淬工艺以及球磨工艺制备稀土基无钴AB5型La(NiMnAlFe)5贮氢合金,用XRD测试了合金的相结构,并测试了不同制备工艺下合金的电化学性能。研究了制备工艺对无钴合金的相结构和电化学性能的影响。结果表明,由真空熔炼和快淬工艺制备的合金为CaCu5型单相结构,球磨合金由CaCu5型相和游离Ni相组成,并出现了非晶化趋势。快淬和球磨均使合金的放电容量降低,循环稳定性提高,但球磨工艺的影响更为显著,主要原因是球磨后合金中出现非晶化趋势。  相似文献   

13.
采用元素替代的方法,研究了Sn元素部分替代Ni元素对La0.72Nd0.08Mg0.2Ni3.4-xSnxAl0.1(x=0~0.14)电极合金结构和电化学性能的影响。通过感应熔炼、退火处理、粉碎过筛后得到合金样品。X射线衍射(XRD)分析表明该合金为多相结构,包括(La,Mg)2Ni7(Gd2Co7型和Ce2Ni7型)、(La,Mg)5Ni19(Pr5Co19型)、(La,Mg)Ni3(Pu Ni3型)和La Ni5相(Ca Cu5型)。结构精修显示合金主相由Gd2Co7型(La,Mg)2Ni7相依次变化为(La,Mg)5Ni19,La Ni5相。恒电流充放电测试表明,合金放电容量最大值为387.4 m Ah·g-1。加入Sn后合金电极的放电容量下降,这与合金中相含量的变化是有关系的。Sn的加入导致合金中高吸氢相(La,Mg)2Ni7相的减少,而吸氢能力相对小的(La,Mg)5Ni19相和La Ni5相含量不断增加。高倍率放电测试表明随着Sn元素加入,高倍率放电性能下降。电化学循环稳定性测试表明随着Sn元素含量的增加,合金电极循环寿命先增加后下降。当Sn含量x=0.06时,在100次电化学循环后放电容量保持率达到最高水平83.8%。  相似文献   

14.
用熔体快淬法制备了稀土系AB_5型ML(NiCoMnFe)_(5.5-x)Al_x(x=0.1~0.3)贮氢合金,在氩气气氛中1000℃下对样品进行热处理,通过X射线衍射、PCT和电性能测试等分析了铝元素对AB5型贮氢合金微观组织和电化学性能的影响。结果显示,热处理样品组织主要由CaCu_5型相组成,组织结构中含有少量NiFe杂相,Al=0.30时合金晶胞体积最大88.49?。PCT测试表明,当Al元素部分替代Ni后,合金的吸氢平台压力减小、吸放氢平台变得比较平坦,x=0.10时合金最大吸氢量为0.9146H/M。电化学性能分析,ML(NiCoMnFe)_(5.5-x)Al_x(x=0.1~0.3)合金具有较好的活化性能,x=0.20合金具有较好的综合性能,最高放电容量337.2mAh/g、循环寿命329次。  相似文献   

15.
采用感应熔炼方法制备了La0.75Mg0.25Ni3.5-xFex(x=0.0.05,0.1,0.2,0.3)四元贮氢合金,系统地研究了合金B侧Fe对Ni部分替代对合金相结构及电化学性能的影响.X射线衍射(XRD)分析表明,La0.75Mg0.25Ni3.5-xFex由(La,Mg)2Ni7相(包括Gd2Co7型高温相和Ce2Ni7型低温相)组成.此外,随着Fe元素的加入,该类合金中出现CaCu5型LaNi5相,且随着Fe含量的增加而增多.电化学测试表明,随Fe含量的增加,合金电极活化次数变化不大,而其最大放电容量呈现先增后减的趋势,合金的最大放电容量由x=0.05时的376.21 mAh·g -1下降到x=0.3时的340.89 mAh·g-1;合金的高倍率放电性能随着Fe含量的增加而降低,当电流密度为900 mA·g-1时,合金的高倍率放电性能由83.66%(x=0)减小到62.23%(x=0.3);循环稳定性先增加后下降.  相似文献   

16.
采用中频感应真空熔炼制备La0.75Mg0.25Ni3.47Co0.2Al0.03合金,并借助电化学和气态循环实验、SEM、XPS等手段对合金电极失效的原因进行研究.结果表明,合金放电容量和吸氢容量的衰减在循环过程中均分为快速和缓慢两个阶段.随循环次数的增加,在电化学循环过程中,合金颗粒表面的氧化腐蚀产物逐渐增多,接触电阻和电荷传递电阻先降低后提高;在气态吸放氢过程中,合金颗粒裂纹逐渐增多,且开裂程度增大.La和Mg的氧化腐蚀损耗是导致合金放电容量衰减的主要原因,而合金颗粒粉化加剧了La、Mg的腐蚀,进一步恶化合金电极的稳定性.  相似文献   

17.
采用电磁感应悬浮炉制备La0.55Pr0.05Nd0.15Mg0.25Ni3.5-xCoxAl0.25(x=0,0.1,0.2,0.3,0.4)系列合金,研究Co含量对合金的相结构、吸放氢性能和电化学性能的影响。研究结果表明,该系列合金主要由LaNi5、Nd2Ni7相组成。当Co含量大于0.2时,合金中出现La2Ni7相。压强-吸氢量-温度(Pressure-Content-Temprature)测试显示在303 K温度下,合金具有良好的吸氢性能,当x=0.4时合金的最大吸氢量为1.29(质量分数,%)。电化学测试表明:随x值变化,合金电极的最大放电容量分别为340.0(x=0.0)、346.6(x=0.1)、370.0(x=0.2)、320.0(x=0.3)和346.6(mA.h)/g(x=0.4);随Co含量增加,合金电极容量保持率不断增加,高倍率放电性能先增加后减小,循环伏安曲线、氢在合金体中的扩散系数D共同反映了合金电极的动力学特性。  相似文献   

18.
快淬对合金Mm(NiCoMnAl)5.1B0.1组织及电化学性能的影响   总被引:3,自引:1,他引:2  
对铸态和快淬态贮氢合金Mm(NiCoMnAl)5.1B0.1的微观组织和电化学性能进行了研究。发现快淬态合金基本上消除了第二相,快淬合金组织中存在一定比例的非晶相,并且随着淬速增加非晶相的量增多;与铸态合金相比,快淬态合金的放电容量有所降低,但循环寿命显著提高,这主要是由于快淬导致晶粒细化和形成一定数量的非晶态组织。  相似文献   

19.
为了研究退火时间对LaMgNi_(3.9)Mn_(0.2)合金的结构和气态吸放氢性能的影响,采用XRD和SEM手段测试了合金的物相和微观结构,半自动Siever′s法测试了合金的吸放氢动力学曲线。实验结果表明,随着退火时间增加,合金中LaMg(NiMn)_4主相含量降低,(La,Mg)(NiMn)_5相含量增加。铸态及退火合金表面均由不同尺寸的柱状晶组成,具有明显的组织遗传效应;随着退火时间增加,合金柱状晶区域中La、Mg、Ni的含量差值都降低,元素分布更均匀,15 h与20 h退火合金的柱状晶晶间区域中Mn元素消失。铸态和退火合金第一次吸氢后达到相应的最大吸氢量,故退火时间对合金的活化性能无影响,但对合金的最大吸氢量、饱和吸放氢量具有明显影响。随着退火时间增加,合金的最大吸氢量、饱和吸放氢量降低,但合金的吸放氢饱和率先增加后降低,15 h退火合金的吸放氢饱和率相对较高。  相似文献   

20.
中频感应熔炼法制备了La0.55Pr0.05NdxMg0.4-xNi3.3Al0.1(x=0.10、0.15、0.20)储氢合金.通过X射线衍射(XRD)和Rietveld方法分析了每个合金的相结构,分析结果表明,由于Nd/Mg比不同,三个合金的相组成不完全相同.同时应用扫描电镜(SEM)察了合金的形貌并结合能谱(EDS)方法测定了各相的组成,测定结果与XRD分析结果有所不同.La0.55Pr0.05NdxMg0.4-xNi3.3Al0.1(x=0.10、0.15、0.20)合金在313 K第一次吸放氢的P-C-T曲线显示出两个平台压力,分别对应于(La,Mg)2(Ni,Al)7相和La(Ni,Al)5相.合金的储氢容量随X值的增大先增加后减小,这种变化规律可能与合金中储氢相的丰度以及晶胞体积有关.该系列合金的吸/放氢动力学曲线表明,Nd含量适中的合金的吸/放氢动力学性能相对较好.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号