共查询到19条相似文献,搜索用时 68 毫秒
1.
陈明 《计算机工程与应用》2008,44(6):29-32
基于领域知识与顾客购买倾向相关联的事实,从知识表示、知识获取、系统实现三个方面研究了个性化协同商务推荐系统的实现策略。知识表示研究了自然语言的本体表示,主要包括:知识本体描述、模糊关系设计、概念关联抽象和公理修正四个部分;知识获取采用多层次领域知识获取和基于数据挖掘的智能知识获取两种方法,对知识的形式化和结构化进行了研究;基于J2EE技术创建了由客户端、服务器端、存储系统组成的协同商务推荐系统的结构模型。最后通过测试网站对系统的有效性进行了验证。 相似文献
2.
王艳 《自动化技术与应用》2021,40(4):153-156,174
在我国社会经济快速发展的大背景下,城市居民对于农产品的需求呈现出多样化的发展趋势,通过针对电子商务系统的合理化设计,实现个性化的农产品推荐,对于增加农村居民收入有着十分重要的意义.因此,本文详细介绍了基于个性化推荐的农产品电子商务系统的设计方案,旨在提高农产品的销售效率. 相似文献
3.
个性化推荐在网络应用中能有效提高服务质量,在电子商务中的表现更加突出.论述了基于内容过滤的电子商务推荐系统,利用向量空间模型挖掘用户独特的兴趣特征,然后根据产品信息特征的量化值产生推荐序列,并根据用户的反馈信息自适应学习,以提高系统的综合性能.实验结果表明,基于内容过滤的推荐方法其总体性能随时间的推移得到了提高. 相似文献
4.
5.
随着信息技术及智能移动设备的发展和普及,广告的推送方式和投放平台呈现多样化。传统电商推荐系统的运行速度较慢,无法根据根据用户的实际需求进行推荐。实时广告推荐系统作为应对这些挑战的有效手段,成为个性化服务领域的研究热点之一。文章重点分析了基于Spark的实时广告推荐系统,以期为相关研究提供借鉴。 相似文献
6.
7.
在传统个性化推荐算法的基础上,提出了一种基于多权重相似度的随机漫步推荐算法。为了解决传统协同过滤算法中忽略了社交网络、热门项目以及共同评分项目之间影响等问题,通过引入万有引力公式计算社交网络中的用户相似度,并对传统协同过滤算法中的相似度进行改进,采用权重因子结合这两者相似度,最后开拓性地结合随机漫步算法进行商品推荐。实验结果表明,提出的算法具有比其他推荐算法更好的推荐性能。 相似文献
8.
为解决电子商务推荐系统开放性、效率和精确度问题,给出了基于分布式数据挖掘的电子商务推荐系统(BDBRS)功能结构,提出了该系统的体系结构,然后介绍了BDBRS所应用的技术和BDBRS的设计与实现,最后描述了BDBRS的部分功能模块及人机界面,验证了BDBRS的正确性和本文研究的推荐算法在效率、精确度等方面的优越性。 相似文献
9.
协同过滤推荐作为主流的个性化推荐方法在实际应用中存在一定缺陷, 在一些情况下得到的推荐结果不够准确。考虑到信任与用户偏好相似性的关系, 将信任引入到推荐模型中, 并同时考虑暗示用户偏好的多维因素, 提出基于信任偏好的个性化推荐方法, 以提高推荐系统的准确性, 并用实验验证了此方法的有效性。 相似文献
10.
在电子商务环境中,实现个性化服务,理解用户兴趣就成了提供个性化服务的关键任务。因此,建立用户兴趣模型和构建推荐库就成为个性化推荐系统的实现基础。论文通过网络爬虫获取到相关的网页,进行预处理后,采用SVM(支持向量机)分类文档建立推荐库。通过对用户访问路径、搜索关键字等分析,获取用户兴趣,采用向量空间模型表示用户兴趣,利用机器学习构建用户兴趣模型。在推荐库和用户兴趣模型的基础上,加入推荐引擎,实现了基于电子商务的个性化推荐系统。 相似文献
11.
为满足用户需求,以用户为中心,解决用户关注度不断变化、数据稀疏性、优化时间和空间效率等问题,提出基于用户关注度的个性化新闻推荐系统。推荐系统引入个人兴趣和场景兴趣来描述用户关注度,使用雅克比度量用户相似性,对相似度加权求和预测用户关注度,从而提供给用户经过排序的新闻推荐列表。实验结果表明,推荐系统有效地提高了推荐精准度和覆盖度,改善了系统可扩展性和自动更新能力,具有良好的推荐效果。 相似文献
12.
13.
针对现有个性化商品推荐算法精度不高、新商品不能及时推荐等缺点,提出了一种基于商品特征、用户购买日志及用户实时浏览行为的个性化推荐算法。算法首先根据客户的在线浏览情况获取当前客户的购买倾向,然后将客户的购买日志与商品特征数据库进行对比分析,获得客户对商品特征的偏爱度及推荐参照组,依据特征实体的相似度矩阵进行特征推荐组推荐,最后结合当前的购买倾向向客户推荐商品。 相似文献
14.
针对网络推断(NBI)算法的二部图实现算法忽略二部图权重而导致实际评分值高的项目没有得到优先推荐这一问题,提出加权网络推断(WNBI)算法的加权二部图实现算法。该算法以项目的评分作为二部图中用户与项目的边权,按照用户-项目间边权占该节点权重和的比例分配资源,从而实现评分值高的项目得到优先推荐。通过在数据集MovieLens上的实验表明,相比NBI算法,WNBI算法命中高评分值项目数目增多,同时在推荐列表长度小于20的情况下,命中项目的数量和命中高评分项目数量均有明显增加。 相似文献
15.
目前大多数推荐技术是针对用户单方面兴趣进行的。提出了一种用户多面(multi-faced)兴趣信任度的推荐算法,以适应博客、维客、新闻文章等涉及用户多种兴趣下的推荐。新算法以一种协调的方式将传统的协同过滤算法和基于信任度的推荐算法相结合。实验结果表明,该算法不仅能适应用户多种兴趣下的推荐,而且能有效解决冷启动问题,大大提高了推荐效果。 相似文献
16.
相似度计算在个性化推荐系统中是基本运算,但无论是基于内容还是基于协同过滤的推荐,目前常用的向量相似度计算还存在可以改进之处。在海量公开的数据集上的实验表明,在基于内容的推荐中引入机器学习方法以及在协同过滤推荐中引入区分度来改善相似度计算,可以获取更高的准确率。对MapReduce的分布式计算流程的改进,使得相似度计算更为高效。 相似文献
17.
目前许多基于社化化标注的个性化资源推荐方法均忽视了用户长短期兴趣和多义标签问题对推荐的不同影响,为此,设计区分用户长短期兴趣的指标——用户的标签偏好权重和资源偏好权重;在此基础上,提出一种结合基于内容和基于协同过滤方法优点的混合推荐方法,通过加入标注相同资源的标签向量相似度计算因子,来减小多义标签对推荐结果的影响。实验表明,将该方法引入社会化标注系统资源个性化推荐算法中,能提高推荐精度。 相似文献
18.
基于位置的社交网络(LBSN)中照片带有丰富时间空间位置信息,为发掘用户偏好信息、进行景点推荐提供了条件。现有推荐方法存在推荐条件单一、难以准确估算用户偏好、推荐结果准确性不高的问题。改进传统协同过滤中相似用户计算和推荐方法,提出PTLR方法。通过用户景点照片矩阵计算用户偏好,结合好友亲密度信任关系计算相似邻居。利用多条件如兴趣偏好、景点时间适宜程度及候选周边关联景点产生推荐。实验结果表明PTLR能有效提高推荐准确性。 相似文献
19.
知识情境是知识创造和运用的具体环境和背景,融合知识情境的知识个性化推荐系统是提高知识重用效率和共享特性的重要手段。提出了在知识个性化推荐系统中添加知识情境,使用多层多维度建模方法构建知识情境模型,通过知识情境的相似性评估,将与当前目标情境相似度满足特定值的历史情境所关联的知识推荐给目标用户。实验表明,此方法一定程度上能提高知识个性化推荐的效率。 相似文献