首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Neurons and astrocytes have a close anatomic and functional relationship that plays a crucial role during development and in the adult brain. Astrocytes in the central nervous system (CNS) express receptors for a variety of growth factors (GFs), neurotransmitters and/or neuromodulators; in turn, neuronal cells can respond to astrocyte-derived GFs and control astrocyte function via a common set of signaling molecules and intracellular transducing pathways. There is also increasing evidence that soluble factors from lymphoid/mononuclear cells are able to modulate the growth and function of cells found in the CNS, specifically macroglial and microglial cells. Furthermore, glial cells can secrete immunoregulatory molecules that influence immune cells as well as the glial cells themselves. As neuronal and immune cells share common signaling systems, the potential exists for bidirectional communication not only between lymphoid and glial cells, but also between neuronal cells and immune and glial cells. In the present work, interactions of luteinizing-hormone-releasing hormone (LHRH) and the astroglial cell are proposed as a prototype for the study of neuroimmune communication within the CNS in the light of (1) the commonality of signal molecules (hormones, neurotransmitters and cytokines) and transduction mechanisms shared by glia LHRH neurons and lymphoid cells; (2) the central role of glia in the developmental organization and pattern of LHRH neuronal migration during embryogenesis, and (3) the strong modulatory role played by sex steroids in mechanisms involved in synaptic and interneuronal organization, as well as in the sexual dimorphisms of neuroendocrine-immune functions. During their maturation and differentiation in vitro, astroglial cells release factors able to accelerate markedly the LHRH neuronal phenotypic differentiation as well as the acquisition of mature LHRH secretory potential, with a potency depending on both the 'age' and the specific brain localization of the astroglia, as well as the degree of LHRH neuronal differentiation in vitro. Regional differences in astroglial sensitivity to estrogens were also measured. Different experimental paradigms such as coculture and mixed-culture models between the immortalized LHRH (GT1-1) neuronal cell line and astroglial cells in primary culture, disclosed the presence of a bidirectional flow of informational molecules regulating both proliferative and secretory capacities of each cell type. The importance of adhesive mechanisms in such cross-talk is underscored by the complete abolition of GT1-1 LHRH production and cell proliferation following the counteraction of neuronal-neuronal/neuronal-glial interactions through addition of neural-cell adhesion molecule antiserum. Other information came from pharmacological experiments manipulating the astroglia-derived cytokines and/or nitric oxide, which revealed cross-talk between the neuronal and astroglial compartments. From the bulk of this information, it seems likely that interactions between astroglia and LHRH neurons play a major role in the integration of the multiplicity of brain signals converging on the LHRH neurons that govern reproduction. Another important facet of neuronal-glial interactions is that concerning neuron-guided migration, and unraveling astroglial/LHRH-neuronal networks might then constitute an additional effort in the comprehension of defective LHRH-neuronal migration in Kallman's syndrome.  相似文献   

2.
The dorsal cochlear nucleus (DCN) of mammals displays a cortical structure containing a number of cell types organized into distinct layers. In the present study, the migratory mode of large multipolar cells and granule cells as well as the morphological differentiation of the projection neurons were investigated in the development of the mouse DCN. The classification of the DCN neurons followed that of Ryugo and Willard. The mode of neuronal migration was examined by immunohistochemical bromodeoxyuridine labeling. Large multipolar neurons originated from the primary rhombic lip and small granule cells from the secondary rhombic lip. Large multipolar neurons migrated radially from the ventricular zone into the forming DCN. Granule cells were generated later than the large multipolar neurons and migrated via the subependymal and subpial routes. Large multipolar neurons and small granule cells were thus segregated early in the DCN development and intermixed later during perinatal maturation. Projection neurons retrogradely labeled by DiI application to the contralateral inferior colliculus showed neurite extension between the pial surface and the ventricular zone during migration in the DCN primordium. The retrogradely labeled projection neurons showed a well-differentiated morphology of the large multipolar neurons as early as the late embryonic stage. The arrangement of the radial glial processes coincided with that of the migratory projection neurons. The migratory immature neurons showed close apposition with the radial glial processes, suggesting that glial scaffolds are involved in the migration and settlement of the large multipolar neurons. Thus, it is suggested that the mode of migration and settlement of large multipolar neurons and granule cells in the developing DCN is highly similar to that of Purkinje and granule cell migration in the cerebellar development, based on the findings of this study and the structural similarity between the cerebellum and DCN.  相似文献   

3.
The expression of polysialylated neurons in the dentate gyrus of the hippocampal formation of young (postnatal day 40), mature (postnatal day 80) and aged (postnatal day 540) male Wistar rats has been investigated by immunohistochemical techniques employing a monoclonal antibody specific for neural cell adhesion molecule-linked alpha 2,8 polysialic acid. A strong immunoreactivity was found on the cell bodies, dendrites and axons of granule-like neuronal cells at the border between the hilar region and the granule cell layer of the young rat. In the mature animal the number of immunoreactive neurons declined dramatically and were virtually absent in the aged group. Using an alternative fixation procedure, glial fibrillary acidic protein-positive and polysialylated astroglia processes were found in close proximity to the dendrites of the polysialylated granule-like cells. The number of astroglial processes traversing the granule cell layer showed a similar age-dependent decline to that observed with the polysialylated neurons. Glial fibrillary acidic protein-positive and polysialylated stellate astroglia were present throughout the hippocampal formation, but did not show the marked age-dependent decline observed with the astroglial processes in the granule cell layer. The neuronal dendrites and astroglial processes exhibited a strict numerical ratio in the young and mature animal and, in double immunofluorescence studies with anti-polysialic acid and anti-glial fibrillary acidic protein, the astroglial processes exhibited apparent points of cell and/or dendritic contact. These findings suggest that loss of polysialylated astroglial processes precedes the decline in polysialylated dentate neurons.  相似文献   

4.
An in vitro slice culture was established for investigating olfactory neural development. The olfactory epithelium was dissected from embryonic day 13 rats; 400 microns slices were cultured for 5 days in serum-free medium on Millicell-CM membranes coated with different substrates. The slices were grown in the absence of their appropriate target, the olfactory bulb, or CNS derived glia. The cultures mimic many features of in vivo development. Cells in the olfactory epithelium slices differentiate into neurons that express olfactory marker protein (OMP). OMP-positive cells have the characteristic morphology of olfactory receptor neurons: a short dendrite and a single thin axon. The slices support robust axon outgrowth. In single-label experiments, many axons expressed neural specific tubulin, growth-associated protein 43 and OMP. Axons appeared to grow equally well on membranes coated with type I rat tail collagen, laminin or fibronectin. The cultures exhibit organotypic polarity with an apical side rich in olfactory neurons and a basal side supporting axon outgrowth. Numerous cells migrate out of the slices, of which a small minority was identified as neurons based on the expression of neural specific tubulin and HuD, a nuclear antigen, expressed exclusively in differentiated neurons. Most of the migrating cells, however, were positive for glial fibrillary acidic protein and S-100, indicating that they are differentiated glia. A subpopulation of these glial cells also expressed low-affinity nerve growth factor receptors, indicating that they are olfactory Schwann cells. Both migrating neurons and glia were frequently associated with axons growing out of the slice. In some cases, axons extended in advance of migrating cells. This suggests that olfactory receptor neurons in organotypic cultures require neither a pre-established glial/neuronal cellular terrain nor any target tissue for successful axon outgrowth. Organotypic olfactory epithelial slice cultures may be useful for investigating cellular and molecular mechanisms that regulate early olfactory development and function.  相似文献   

5.
During development, a subpopulation of olfactory neurons transiently expresses GABA. The spatiotemporal pattern of GABAergic expression coincides with migration of luteinizing hormone-releasing hormone (LHRH) neurons from the olfactory pit to the CNS. In this investigation, we evaluated the role of GABAergic input on LHRH neuronal migration using olfactory explants, previously shown to exhibit outgrowth of olfactory axons, migration of LHRH neurons in association with a subset of these axons, and the presence of the olfactory-derived GABAergic neuronal population. GABAA receptor antagonists bicuculline (10(-5) M) or picrotoxin (10(-4) M) had no effect on the length of peripherin-immunoreactive olfactory fibers or LHRH cell number. However, LHRH cell migration, as determined by the distance immunopositive cells migrated from olfactory pits, was significantly increased by these perturbations. Addition of tetrodotoxin (10(-6) M), to inhibit Na+-transduced electrical activity, also significantly enhanced LHRH migration. The most robust effect observed was dramatic inhibition of LHRH cell migration in explants cultured in the presence of the GABAA receptor agonist muscimol (10(-4) M). This study demonstrates that GABAergic activity in nasal regions can have profound effects on migration of LHRH neurons and suggests that GABA participates in appropriate timing of LHRH neuronal migration into the developing brain.  相似文献   

6.
As postmitotic neurons migrate to their final destinations, they encounter different cellular microenvironments, but functional responses of migrating neurons to changes in local environmental cues have not been examined. In the present study, we used a confocal microscope on acute cerebellar slice preparations to examine real-time changes in the shape of granule cells, as well as the mode and rate of their migration as they transit different microenvironments. The rate of granule cell movement is fastest in the molecular layer, whereas their elongated somata and long leading processes remain in close contact with Bergmann glial fibers. Cell movement is slowest in the Purkinje cell layer after granule cells detach from the surface of Bergmann glia and the somata become transiently round, whereas the leading processes considerably shorten. Surprisingly, after entering the internal granular layer, granule cells re-extend both their somata and leading processes as they resume rapid movement independent of Bergmann glial fibers. In this last phase of migration, described here for the first time, most granule cells move radially for >100 micron (a distance comparable to that observed in the molecular layer) until they reach the deep strata of the internal granular layer, where they become rounded again and form synaptic contacts with mossy fiber terminals. These observations reveal that migrating neurons alter their shape, rate, and mode of movement in response to local environmental cues and open the possibility for testing the role of signaling molecules in cerebellar neurogenesis.  相似文献   

7.
Chromaffin cells grafted to the brain of animals with experimental parkinsonism and patients with Parkinson's disease can restore nigrostriatal functions. Mechanisms underlying these beneficial effects are unknown, but may include growth factors rather than the minute amounts of dopamine (DA) liberated from chromaffin cells. We now report that protein from chromaffin granules, which release their contents by exocytosis, promotes survival and uptake of 3H-DA of mesencephalic DAergic neurons in vitro and protect against N-methylpyridinium ion toxicity. This neurotrophic effect is accompanied by cell proliferation and mediated by astroglial cells induced in these cultures. Inhibition of cell proliferation and concomitant astrogliosis by 5-fluorodeoxyuridine and alpha-aminoadipic acid abolishes the trophic effect. Two highly specific inhibitors of the epidermal growth factor receptor (EGFR) signal transduction pathway, 4,5-dianilinophthalimide (10 microM) and tyrphostin B56 (10 microM), selectively block the neurotrophic capacity of chromaffin granule protein. As expected, they also block the mitogenic effects of EGF and TGF-alpha. However, these two mitogens do not mimic the pronounced mitogenic and trophic actions of chromaffin granule protein. Culture medium conditioned by mesencephalic cells pretreated with chromaffin granule protein promotes survival of DAergic neurons without increasing numbers of astroglial cells. The effective molecule is unlikely to be glial cell line-derived neurotrophic factor, whose mRNA is not detectable in cultures treated with chromaffin granule protein. We conclude that chromaffin granules contain a putatively novel growth factor, which signals through the EGFR and may be responsible for the known protective and restorative actions of chromaffin cell grafts to the lesioned nigrostriatal system.  相似文献   

8.
9.
Oligodendrocyte-type 2 astrocyte (O-2A) progenitors are highly motile cells which migrate in the developing and adult central nervous system (CNS). Adult CNS myelin, however, contains inhibitory proteins, the neurite growth inhibitors NI 35/250, which block neurite outgrowth and spreading of many different cell types, such as astrocytes and fibroblasts. In the present study we investigated the spreading of dissociated cells and migration out of aggregates ('spheres') of primary O-2A cultures and of a glial precursor cell line (CG-4) on purified CNS myelin and on CNS tissue. Primary O-2A progenitors and CG-4 cells quickly attached to and spread on CNS myelin-coated culture dishes, showing no inhibition by the neurite growth inhibitors. CG-4 cells migrated with a velocity of 30 microns/h on a CNS myelin protein extract and at 5.7 microns/h on adult spinal cord tissue. Both cell spreading and migration on a CNS substrate could be specifically blocked by metalloprotease blockers like o-phenanthroline and the tetrapeptide carbobenzoxy-phe-ala-phe-tyr-amide, whereas blockers of the serine, aspartyl and cysteine proteases had no effect. On differentiation to astrocytes, the O-2A progenitors lost their ability to spread on CNS myelin. These results suggest the crucial involvement of a metalloprotease in the mechanism of migration on a CNS substrate. In vivo, migration of oligodendrocyte progenitors may be an important aspect of myelin repair following local traumatic, inflammatory or toxin-induced myelin loss.  相似文献   

10.
Pleiotrophin/heparin-binding growth-associated molecule (HB-GAM) is a specific ligand of protein tyrosine phosphatase zeta (PTPzeta)/receptor-like protein tyrosine phosphatase beta (RPTPbeta) expressed in the brain as a chondroitin sulfate proteoglycan. Pleiotrophin and PTPzeta isoforms are localized along the radial glial fibers, a scaffold for neuronal migration, suggesting that these molecules are involved in migratory processes of neurons during brain development. In this study, we examined the roles of pleiotrophin-PTPzeta interaction in the neuronal migration using cell migration assay systems with glass fibers and Boyden chambers. Pleiotrophin and poly-L-lysine coated on the substratums stimulated cell migration of cortical neurons, while laminin, fibronectin, and tenascin exerted almost no effect. Pleiotrophin-induced and poly-L-lysine-induced neuronal migrations showed significant differences in sensitivity to various molecules and reagents. Polyclonal antibodies against the extracellular domain of PTPzeta, PTPzeta-S, an extracellular secreted form of PTPzeta, and sodium vanadate, a protein tyrosine phosphatase inhibitor, added into the culture medium strongly suppressed specifically the pleiotrophin-induced neuronal migration. Furthermore, chondroitin sulfate C but not chondroitin sulfate A inhibited pleiotrophin-induced neuronal migration, in good accordance with our previous findings that chondroitin sulfate constitutes a part of the pleiotrophin-binding site of PTPzeta, and PTPzeta-pleiotrophin binding is inhibited by chondroitin sulfate C but not by chondroitin sulfate A. Immunocytochemical analysis indicated that the transmembrane forms of PTPzeta are expressed on the migrating neurons especially at the lamellipodia along the leading processes. These results suggest that PTPzeta is involved in the neuronal migration as a neuronal receptor of pleiotrophin distributed along radial glial fibers.  相似文献   

11.
Transplantation of embryonic neurons to the adult mammalian central nervous system (CNS) offers the possibility of re-establishing neural functions lost after traumatic injuries or neurodegenerative disease. In the adult CNS, however, transplanted neurons and their growing neurites can become confined to the graft region, and there may also be a relative paucity of afferents innervating grafted neurons. Because glia may influence the development and regeneration of CNS neurons, the present study has characterized the distribution of astrocytes and developmentally regulated glycoconjugates (chondroitin-6-sulfate proteoglycan and tenascin) within regions of the embryonic mouse CNS used as donor tissues, and in and around these grafts to the adult striatum and substantia nigra. Both chondroitin-6-sulfate proteoglycan and tenascin are present in the embryonic ventral mesencephalon (in association with radial glia and their endfeet, and glial boundaries that cordon off the ventral mesencephalon dopamine neuron migratory zone) and lateral ganglionic eminence before transplantation, and they are conserved within grafts of these tissues to the adult mouse. Neostriatal grafts exhibit a heterogeneous pattern of astrocyte and extracellular matrix molecule distribution, unlike ventral mesencephalon grafts, which are rather homogeneous. There is evidence to suggest that, in addition to variation in astroglial/extracellular matrix immunostaining within different compartments in striatal grafts to either adult striatum or substantia nigra, there are also boundaries between these compartments that are rich in glial fibrillary acidic protein/extracellular matrix components. Substantia nigra grafts, with cells immunoreactive for tyrosine hydroxylase, are also rich in immature astroglia (RC-2-immunopositive), and as the astroglia mature (to glial fibrillary acidic protein-positive) over time the expression of chondroitin-6-sulfate proteoglycan and tenascin is also reduced. These same extracellular matrix constituents, however, are only slightly up-regulated in an area of the adult host which surrounds the grafted tissue. Glial scar components exhibit no obvious differences between grafts from different sources to homotopic (e.g., striatum to striatum) or heterotopic (e.g., substantia nigra to striatum) sites, and likewise grafts of non-synaptically associated structures (e.g., cerebellum to striatum), needle lesions or vehicle injections all yield astroglial/extracellular matrix scars in the host that are indistinguishable. Studies utilizing the ROSA-26 transgenic (beta-galactosidase-positive) mouse as a host for non-5-bromo-4-chloro-3-indolyl-beta-d-galactopyranoside-labeled grafts indicate that the early astroglial/extracellular matrix response to the graft is derived from the surrounding host structures. Furthermore, biochemical analysis of one of the "boundary molecules", tenascin, from the developing ventral mesencephalon versus adult striatal lesions, suggests that different forms of the molecule predominate in the embryonic versus lesioned adult brain. Such differences in the nature and distribution of astroglia and developmentally regulated extracellular matrix molecules between donor and host regions may affect the growth and differentiation of transplanted neurons. The present study suggests that transplanted neurons and their processes may flourish within graft versus host regions, in part due to a confining glial scar, but also because the extracellular milieu within the graft site remains more representative of the developmental environment from which the donor neurons were obtained [Gates M. A., et al. (1994) Soc. Neurosci. Abstr. 20, 471].  相似文献   

12.
In order to investigate the role of neuron-glia interactions in the response of astroglial to a non-invasive cerebellar cortex injury, we have used two cases of the ataxic form of Creutzfeldt-Jakob disease (CJD) with distinct neuronal loss and diffuse astrogliosis. The quantitative study showed no changes in cell density of either Purkinje or Bergmann glial cells in CJ-1, whereas in the more affected CJ-2 a loss of Purkinje cells and an increase of Bergmann glial cells was found. The granular layer in both CJD cases showed a similar loss of granule cells (about 60%) in parallel with the significant increase in GFAP+ reactive astrocytes. GFAP immunostaining revealed greater reactivity of Bergmann glia in CJ-2 than in CJ-1, as indicated by the thicker glial processes and the higher optical density. Granular layer reactive astrocytes were regularly spaced. In both CJD cases there was strict preservation of the spatial arrangement of all astroglial subtypes--Fa?anas cells, Bergmann glia and granular layer astrocytes. Reactive Fa?anas and Bergmann glial cells and microglia/macrophages expressed vimentin, while only a few vimentin+ reactive astrocytes were detected in the granular layer. Karyometric analysis showed that the increase in nuclear volume in reactive astroglia was directly related with the level of glial hypertrophy. The number of nucleoli per nuclear section was constant in astroglial cells of human controls and CJD, suggesting an absence of polyploidy in reactive astroglia. Ultrastructural analysis revealed junctional complexes formed by the association of macula adherens and gap junctions. In the molecular layer numerous vacant dendritic spines were ensheathed by lamellar processes of reactive Bergmann glia. Our results suggest that quantitative (neuron/astroglia ratio) and qualitative changes in the interaction of neurons with their region-specific astroglial partners play a central role in the astroglial response pattern to the pathogenic agent of CJD.  相似文献   

13.
The excitatory effect of presynaptically released glutamate is tightly regulated and terminated by high affinity sodium-dependent glutamate transporters. The regulation of the glial glutamate transporter GLT-1 is potentially important in synaptic modulation. Using astroglial cultures prepared from the rat cerebral cortex, we found that the delta-opioid receptor agonist [D-pen2,D-pen5]-enkephalin decreases and glutamate increases the expression of the GLT-1 transporter mRNA. Corresponding changes in the uptake kinetics were found after incubation for 48 h with the respective agonists when glial glutamate uptake was measured in primary astroglial cultures. The data suggest that long-term receptor activation induces alterations in glial glutamate uptake properties.  相似文献   

14.
Transplant-to-host neuron migration and neurite projection were demonstrated using the mouse allelic Thy-1 system, namely, BALB/c (Thy-1.2) embryonic olfactory bulb (OB) as the graft and 5- to 6-week-old AKR (Thy-1.1) OB as the host. From OB transplants inserted into the host OB, small neurons were often extensively moved mainly in the internal granular layer and showed almost the same morphology as the normal granule neurons. Some large neurons also migrated. Furthermore, inside OB the transplants sent axons mainly into the internal granular layer and dendrites into the external plexiform layer. Outside OB the axons arrived at the anterior olfactory nucleus, primary olfactory cortex, olfactory tubercle, and cortical nucleus of the amygdaloid complex. These fibers appeared to terminate in normal target areas. These findings show that the olfactory system at 5-6 weeks of age still has the capacity to integrate newly migrated neurons and to receive newly growing fibers from the transplant.  相似文献   

15.
The cochlear nucleus (CN) is the first site in the central nervous system (CNS) for processing auditory information. Acetylcholine in the CN is primarily extrinsic and is an important neurotransmitter in efferent pathways thought to provide CNS modulation of afferent signal processing. Although muscarinic acetylcholine receptors have been studied in the CN, the role of nicotinic receptors has not. We examined the distribution of one nicotinic acetylcholine receptor subtype, the alpha-bungarotoxin receptor (alpha Bgt), in the CN. Quantitative autoradiography was used to localize receptors and in situ hybridization was used to localize alpha 7 mRNA in CN neurons that express the alpha Bgt receptor. Binding sites for alpha Bgt are abundant in the anterior ventral, posterior ventral, and dorsal divisions of the CN, and receptor density is low in the granule cell layer and interstitial nucleus. Heterogeneity in CN subregions is described. Four distinct patterns of alpha Bgt binding were observed: (1) binding over and around neuronal cell bodies, (2) receptors locally surrounding neurons, (3) dense punctate binding in the dorsal CN (DCN) not associated with neuronal cell bodies, and (4) diffuse fields of alpha Bgt receptors prominent in the DCN molecular layer, a field underlying the granule cell layer and in the medial sheet. The perikaryial receptors are abundant in the ventral CN (VCN) and are always associated with neurons expressing mRNA for the receptor. Other neurons in the VCN also express alpha 7 mRNA, but without alpha Bgt receptor expression associated with the cell body. In general, alpha Bgt receptor distribution parallels cholinergic terminal distribution, except in granule cell regions rich in cholinergic markers but low in alpha Bgt receptors. The findings indicate that alpha Bgt receptors are widespread in the CN but are selectively localized on somata, proximal dendrites, or distal dendrites depending on the specific CN subregion. The data are consistent with the hypothesis that descending cholinergic fibers modulate afferent auditory signals by regulating intracellular Ca2+ through alpha Bgt receptors.  相似文献   

16.
The present paper is the first comprehensive study on the astroglia of a teleost fish that is based on the immunohistochemical staining of GFAP (glial fibrillary acidic protein, an immunohistochemical marker of astroglia). The ray-finned fishes (Actinopterygii) and their largest group, the Teleostei, represent a separate pathway of vertebrate evolution. Their brain has a very complex macroscopic structure; several parts either have no equivalents in tetrapods or have a very different shape, e.g., the telencephalon. The results show that the teleost brain has a varied and highly specialized astroglial architecture. The primary system is made up of radial glia, which are of ependymal origin and cover the pial surface with endfeet. The tendency is, however, that the more caudal a brain area is, the less regular is the radial arrangement. A typical radial glia dominates some parts of the diencephalon (median eminence, lobus inferior and habenula) and the telencephalon. In the rest of the diencephalon and in the mesencephalon, the course of the glial fibers is modified by brain tracts. The most specialized areas of the teleost brain, the optic tectum and the cerebellum, display elaborate variations of the original radial system, which is adapted to their layered organization. In the cerebellum, an equivalent of the Bergmannglia can be found, although its fiber arrangement shows meaningful differences from that of mammals or birds. In the lower brain stem radial glia are confined to fibers separating the brain tracts and forming the midline raphe. A dense ependymoglial plexus covers the inner surface of the tectum and the bottom of the rhombencephalic ventricle, intruding into the vagal and facial lobes. The structure and the position of the rhombencephalic plexus suggest that it corresponds to a circumventricular organ that entirely occupies the bottom of the ventricle. Perivascular glia show an unusual form as they consist of long fibers running along the blood vessels. In the large brain tracts long glial fibers run parallel with the course of the neural fibers. At least in the diencephalon, these glial fibers seem to be modified radial fibers. Real astrocytes (i.e., stellate-shaped cells) can be found only in the brain stem and even there only rarely. The glial specialization in the various areas of the teleost brain seems to be more elaborate than that found either in amphibia or in reptiles.  相似文献   

17.
The chemokine stromal cell-derived factor 1, SDF-1, is an important regulator of leukocyte and hematopoietic precursor migration and pre-B cell proliferation. The receptor for SDF-1, CXCR4, also functions as a coreceptor for T-tropic HIV-1 entry. We find that mice deficient for CXCR4 die perinatally and display profound defects in the hematopoietic and nervous systems. CXCR4-deficient mice have severely reduced B-lymphopoiesis, reduced myelopoiesis in fetal liver, and a virtual absence of myelopoiesis in bone marrow. However, T-lymphopoiesis is unaffected. Furthermore, the cerebellum develops abnormally with an irregular external granule cell layer, ectopically located Purkinje cells, and numerous chromophilic cell clumps of abnormally migrated granule cells within the cerebellar anlage. Identical defects are observed in mice lacking SDF-1, suggesting a monogamous relationship between CXCR4 and SDF-1. This receptor-ligand selectivity is unusual among chemokines and their receptors, as is the function in migration of nonhematopoietic cells.  相似文献   

18.
The lack of axonal regeneration in the injured adult mammalian spinal cord leads to permanent functional impairment. To induce axonal regeneration in the transected adult rat spinal cord, we have used the axonal growth-promoting properties of adult olfactory bulb ensheathing glia (EG). Schwann cell (SC)-filled guidance channels were grafted to bridge both cord stumps, and suspensions of pure (98%) Hoechst-labeled EG were stereotaxically injected into the midline of both stumps, 1 mm from the edges of the channel. In EG-transplanted animals, numerous neurofilament-, GAP-43-, anti-calcitonin gene-related peptide (CGRP)-, and serotonin-immunoreactive fibers traversed the glial scars formed at both cord-graft interfaces. Supraspinal serotonergic axons crossed the transection gap through connective tissue bridges formed on the exterior of the channels, avoiding the channel interior. Strikingly, after crossing the distal glial scar, these fibers elongated in white and periaqueductal gray matter, reaching the farthest distance analyzed (1.5 cm). Tracer-labeled axons present in SC grafts were found to extend across the distal interface and up to 800 microm beyond in the distal cord. Long-distance regeneration (at least 2.5 cm) of injured ascending propriospinal axons was observed in the rostral spinal cord. Transplanted EG migrated longitudinally and laterally from the injection sites, reaching the farthest distance analyzed (1.5 cm). They moved through white matter tracts, gray matter, and glial scars, overcoming the inhibitory nature of the CNS environment, and invaded SC and connective tissue bridges and the dorsal and ventral roots adjacent to the transection site. Transplanted EG and regenerating axons were found in the same locations. Because EG seem to provide injured spinal axons with appropriate factors for long-distance elongation, these cells offer new possibilities for treatment of CNS conditions that require axonal regeneration.  相似文献   

19.
Perturbation of astrocyte functions by HIV-1 infection may contribute to the pathogenesis of AIDS dementia complex (ADC). The present study investigated the possibility that astroglial transport of glutamate and aspartate, the major excitatory amino acids (EAAs) in the mammalian central nervous system (CNS), is altered by HIV-1 infection. Human U251 glioma cells were infected with the brain isolate SF162 of HIV-1. HIV-1 persisted in glial cells over several months. This nonproductive infection of glial cells was characterized by persistent expression of Nef over the time of the infection, and the transient presence of structural viral proteins, including the viral transmembrane glycoprotein gp41, which was detected during the initial 2 weeks following HIV-1 infection. The presence of gp41 in acutely HIV-1-infected glial cells coincided with a 36% decrease in D-[3H]aspartate uptake, owing to a reduction in the maximal transport capacity (vmax) for D-aspartate. The expression of typical astrocytic glutamate transporters EAAT1 and EAAT2 in U251 glioma cells was not altered by HIV-1 infection. To determine whether viral protein gp120, gp41, or Nef was involved in the impairment of EAA transport in acutely HIV-1-infected glial cells, effects of lentiviral lytic peptide type 1 (LLP-1) (corresponding to the carboxy terminus of gp41), recombinant SF2 gp120, and recombinant LAI Nef on D-[3H]aspartate uptake and the release of glutamate in glial cells were investigated. Only LLP-1 reduced D-[3H]aspartate uptake and facilitated the release of glutamate from glial cells in a concentration-dependent manner. These results suggest that the carboxy terminus of gp41 impairs EAA transport in glial cells, which may contribute to excitotoxic damage to neurons in HIV-1 infection of the CNS.  相似文献   

20.
An immortalized neural cell line V1 was transplanted stereotaxically into the cerebellum and hippocampus of developing and adult mice, and the mode of migration, differentiation and arrangement of the grafted cells were examined by labeling the grafted cells with DiI (1, 1'-dioctadecyl-3, 3, 3', 3'-tetramethylindocarbocyanine perchlorate) and immunohistochemical staining. This cell line was established by transduction of the temperature-sensitive allele tsA58 of SV40 large T antigen oncogene into mouse hypothalamic cells. Grafted cells did not show any tumorigenicity for a long time. Some of the cells grafted into the neonatal cerebellum and hippocampus were arranged along the host cortical layer and showed neuronal or glial differentiation according to the grafted site. The cells grafted into adult cerebellum also showed migration and arrangement along the host cortical layer as well as morphological differentiation into glial cells in a manner similar to that of transplantation to the neonate. On the other hand, the cells grafted into the adult hippocampus made only clusters without forming an organized arrangement. These findings suggest that the grafted cells are integrated into the developmental processes of the host brain, and the mode of differentiation and arrangement of the grafted cells depends on the microenvironment of the different developmental stages of the host brain. The involvement of host blood vessels and astroglial framework in the migration and arrangement of the grafted cells was also suggested. Furthermore, these findings suggest the plasticity of the host brain in response to the grafted cells and the possibility of reconstructing the host brain with this multipotential neural cell line.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号