首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Proliferation of airway smooth muscle results from persistent inflammatory cytokine and growth factor stimulation and is a critical component of airway luminal narrowing in chronic asthma. Using primary cultures of bovine tracheal smooth muscle (BTSM) cells to examine the signaling basis of cell proliferation, platelet-derived growth factor (PDGF)-BB and thrombin (which act through distinct receptor types) were found to induce DNA synthesis in BTSM cells. Mitogen-induced DNA synthesis could be completely inhibited by LY294002, a selective phosphoinositide 3-kinase (PtdIns 3-kinase) inhibitor. Exposure of BTSM cells to PDGF-BB or thrombin resulted in rapid activation of PtdIns 3-kinase and accumulation of phosphoinositide-3,4,5-trisphosphate. Protein kinase B, a novel signaling protein kinase, was identified in BTSM cells and was activated by PDGF-BB and thrombin in a PtdIns 3-kinase-dependent manner; this may underlie mitogen-stimulated activation of p70(s6k). PD98059, a mitogen-activated protein kinase kinase 1 inhibitor, also partially inhibited PDGF-BB- and thrombin-stimulated DNA synthesis, indicating a modulatory role for mitogen-activated protein kinase in proliferation. GF109203X, Ro 31-8220, calphostin C, and chelerythrine (selective protein kinase C inhibitors) had no effect on PDGF-BB- or thrombin-stimulated DNA synthesis, suggesting that, despite abolishment of mitogen-stimulated protein kinase C activity, cell proliferation stimulated by PDGF-BB and thrombin is protein kinase C-independent. These data demonstrate that the PtdIns 3-kinase/protein kinase B pathway represents a key signaling route in airway smooth muscle proliferation, with the mitogen-activated protein kinase kinase 1/mitogen-activated protein kinase cascade providing a complementary signal required for the full mitogenic response.  相似文献   

3.
4.
Protein kinase B (PKB) is activated in response to phosphoinositide 3-kinases and their lipid products phosphatidylinositol 3,4, 5-trisphosphate [PtdIns(3,4,5)P3] and PtdIns(3,4)P2 in the signaling pathways used by a wide variety of growth factors, antigens, and inflammatory stimuli. PKB is a direct target of these lipids, but this regulation is complex. The lipids can bind to the pleckstrin homologous domain of PKB, causing its translocation to the membrane, and also enable upstream, Thr308-directed kinases to phosphorylate and activate PKB. Four isoforms of these PKB kinases were purified from sheep brain. They bound PtdIns(3,4,5)P3 and associated with lipid vesicles containing it. These kinases contain an NH2-terminal catalytic domain and a COOH-terminal pleckstrin homologous domain, and their heterologous expression augments receptor activation of PKB, which suggests they are the primary signal transducers that enable PtdIns(3,4,5)P3 or PtdIns- (3,4)P2 to activate PKB and hence to control signaling pathways regulating cell survival, glucose uptake, and glycogen metabolism.  相似文献   

5.
Recent studies have suggested a role for phosphatidylinositol (PI) 3-kinase in cell survival, including the survival of neurons. We used rat sympathetic neurons maintained in vitro to characterize the potential survival signals mediated by PI 3-kinase and to test whether the Akt protein kinase, a putative effector of PI 3-kinase, functions during nerve growth factor (NGF)-mediated survival. Two PI 3-kinase inhibitors, LY294002 and wortmannin, block NGF-mediated survival of sympathetic neurons. Cell death caused by LY294002 resembles death caused by NGF deprivation in that it is blocked by a caspase inhibitor or a cAMP analog and that it is accompanied by the induction of c-jun, c-fos, and cyclin D1 mRNAs. Treatment of neurons with NGF activates endogenous Akt protein kinase, and LY294002 or wortmannin blocks this activation. Expression of constitutively active Akt or PI 3-kinase in neurons efficiently prevents death after NGF withdrawal. Conversely, expression of dominant negative forms of PI 3-kinase or Akt induces apoptosis in the presence of NGF. These results demonstrate that PI 3-kinase and Akt are both necessary and sufficient for the survival of NGF-dependent sympathetic neurons.  相似文献   

6.
The intracellular signaling pathways activated upon ligation of the co-stimulatory receptor CD28 remain relatively ill-defined, although CD28 ligation does result in the strong association with, and activation of, phosphatidylinositol (PI) 3-kinase. The downstream effector targets of the CD28-activated PI 3-kinase-dependent signaling pathway remain poorly defined, but recent evidence from other systems has shown that Akt/protein kinase B (PKB) is a major target of PI 3-kinase and have indicated that a major function of PKB is the regulation of cell survival events. Given the strong coupling of CD28 to PI 3-kinase and the known protective effects of both CD28 and PI 3-kinase against apoptosis in different cell models, we investigated the effects of CD28 on PKB activation. We demonstrate that ligation of CD28 by either anti-CD28 monoclonal antibodies or the natural ligand B7.1, results in the marked activation of PKB in both the leukemic T cell line Jurkat and freshly isolated human peripheral blood-derived normal T lymphocytes. Our data suggest therefore, that PKB may be an important intracellular signal involved in CD28 signal transduction and demonstrate CD28 coupling to downstream elements of a signaling cascade known to promote cell survival.  相似文献   

7.
The signal transduction pathway by which insulin stimulates glucose transport is not understood, but a role for complexes of insulin receptor substrate (IRS) proteins and phosphatidylinositol (PI) 3-kinase as well as for Akt/protein kinase B (PKB) has been proposed. Here, we present evidence suggesting that formation of IRS-1/PI 3-kinase complexes and Akt/PKB activation are insufficient to stimulate glucose transport in rat adipocytes. Cross-linking of beta1-integrin on the surface of rat adipocytes by anti-beta1-integrin antibody and fibronectin was found to cause greater IRS-1 tyrosine phosphorylation, IRS-1-associated PI 3-kinase activity, and Akt/PKB activation, detected by anti-serine 473 antibody, than did 1 nM insulin. Clustering of beta1-integrin also significantly potentiated stimulation of insulin receptor and IRS-1 tyrosine phosphorylation, IRS-associated PI 3-kinase activity, and Akt/PKB activation caused by submaximal concentrations of insulin. In contrast, beta1-integrin clustering caused neither a change in deoxyglucose transport nor an effect on the ability of insulin to stimulate deoxyglucose uptake at any concentration along the entire dose-response relationship range. The data suggest that (i) beta1-integrins can engage tyrosine kinase signaling pathways in isolated fat cells, potentially regulating fat cell functions and (ii) either formation of IRS-1/PI 3-kinase complexes and Akt/PKB activation is not necessary for regulation of glucose transport in fat cells or an additional signaling pathway is required.  相似文献   

8.
The effects of wortmannin (WT), an inhibitor of phosphatidylinositol (PI) 3-kinase, on differentiation of PC12 cells were analyzed. WT inhibited PI 3-kinase activity of PC12 cells at a concentration of 10(-7) M in vivo and in vitro. Transient inhibition of PI 3-kinase activity at the time of nerve growth factor stimulation had no effect on activation of the ras protein or neurite formation by the cells. However, continuous inhibition of PI 3-kinase blocked differentiation at the step just before neurite formation. When WT was applied to cells growing neurites, elongation of the neurites was stopped at that step. These results suggest that PI 3-kinase may be involved in neurite elongation.  相似文献   

9.
Adult rat chromaffin cells may proliferate or extend neurites when stimulated by nerve growth factor (NGF) but their response is predominantly proliferative, making them a unique model for studying how mitogenic specificity is achieved. We examined contributions of the NGF receptors trk and p75 and of the major NGF signaling pathways to proliferation versus neurite outgrowth. The type of initial NGF response does not correlate with intensity of immunoreactivity for trk or p75. However, proliferation is initiated at lower NGF concentrations than neurite outgrowth, suggesting that it requires a less intense signal. Mitogenic cooperativity between receptors at low NGF concentrations is suggested by inhibitory effects of p75-blocking antibodies, but responses to trk-agonist antibody indicate that trk activation alone can induce proliferation. NGF-induced phosphorylation of ras-mediated mitogen-activated protein kinases (MAPK) Erk1 and Erk2 is as prolonged in normal chromaffin cells as in PC12 cells, where NGF is neuritogenic. Trk-agonist antibody, which is as mitogenic as NGF but less neuritogenic, causes equally prolonged but less intense ERK phosphorylation. The MAPK kinase(MEK-1) inhibitor PD98059 partially inhibits Erk phosphorylation and does not inhibit chromaffin cell proliferation, while depolarization selectively inhibits proliferation without blocking Erk phosphorylation. Proliferation is markedly reduced by the phosphoinositol-3 (PI-3) kinase inhibitor LY294002 while downregulation of protein kinase C (PKC) causes no change. These findings suggest that low-level, rather than short-duration, stimulation of NGF signaling pathways causes NGF to be mitogenic. Ras-mediated MAPK activation may be more critical in neurite outgrowth than in proliferation and PI-3 kinase may be the major mitogenic determinant.  相似文献   

10.
Sphingolipid metabolites, such as ceramide and sphingosine-1-phosphate (SPP), are emerging as a new class of second messengers involved in cellular proliferation, differentiation, and apoptosis. Nerve growth factor (NGF), a neurotrophic factor for pheochromocytoma PC12 cells, induced a biphasic increase in the activity of sphingosine kinase, the enzyme that catalyzes the formation of SPP. This activation was blocked by K252a, an inhibitor of tyrosine kinase A (trkA). A rapid 1.7-fold increase was followed by a marked prolonged increase reaching a maximum of fourfold to fivefold stimulation with a concomitant increase in SPP levels and a corresponding decrease in endogenous sphingosine levels. Levels of ceramide, the precursor of sphingosine, were only slightly decreased by NGF in serum-containing medium. However, NGF decreased the elevation of ceramide induced by serum withdrawal. Treatment of PC12 cells with SPP did not induce neurite outgrowth or neurofilament expression, yet it enhanced neurofilament expression elicited by suboptimal doses of NGF. Moreover, SPP also protected PC12 cells from apoptosis induced by serum withdrawal. To further substantiate a role for SPP in the cytoprotective actions of NGF, we found that N, N-dimethylsphingosine, a competitive inhibitor of sphingosine kinase, also induced apoptosis and interfered with the survival effect of NGF. These effects were counteracted by exogenous SPP. Moreover, other structurally related compounds, such as dihydrosphingosine 1-phosphate and lysophosphatidic acid, had no significant protective effects. Our results suggest that activation of sphingosine kinase and subsequent formation of SPP may play an important role in the differentiation and survival effects induced by NGF.  相似文献   

11.
Phosphatidylinositol 3-kinase (PI 3-kinase) activation promotes glucose transporter 4 (Glut 4) translocation in adipocytes. In this study, we demonstrate that protein kinase B, a serine/threonine kinase stimulated by PI 3-kinase, is activated by both insulin and okadaic acid in isolated adipocytes, in parallel with their effects on Glut 4 translocation. In 3T3-L1 adipocytes, platelet-derived growth factor activated PI 3-kinase as efficiently as insulin but was only half as potent as insulin in promoting protein kinase B (PKB) activation. To look for a potential role of PKB in Glut 4 translocation, adipocytes were transfected with a constitutively active PKB (Gag-PKB) together with an epitope tagged transporter (Glut 4 myc). Gag-PKB was associated with all membrane fractions, whereas the endogenous PKB was mostly cytosolic. Expression of Gag-PKB led to an increase in Glut 4 myc amount at the cell surface. Our results suggest that PKB could play a role in promoting Glut 4 appearance at the cell surface following exposure of adipocytes to insulin and okadaic acid stimulation.  相似文献   

12.
Phosphatidylinositol (PtdIns) 3-kinase is an enzyme implicated in growth factor signal transduction by associating with receptor and nonreceptor tyrosine kinases, including the platelet-derived growth factor receptor. Inhibitors of PtdIns 3-kinase could potentially give a better understanding of the function and regulatory mechanisms of the enzyme. Quercetin, a naturally occurring bioflavinoid, was previously shown to inhibit PtdIns 3-kinase with an IC50 of 1.3 microgram/ml (3.8 microM); inhibition appeared to be directed at the ATP-binding site of the kinase. Analogs of quercetin were investigated as PtdIns 3-kinase inhibitors, with the most potent ones exhibiting IC50 values in the range of 1.7-8.4 micrograms/ml. In contrast, genistein, a potent tyrosine kinase inhibitor of the isoflavone class, did not inhibit PtdIns 3-kinase significantly (IC50 > 30 micrograms/ml). Since quercetin has also been shown to inhibit other PtdIns and protein kinases, other chromones were evaluated as inhibitors of PtdIns 3-kinase without affecting PtdIns 4-kinase or selected protein kinases. One such compound, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (also known as 2-(4-morpholinyl)-8-phenylchromone, LY294002), completely and specifically abolished PtdIns 3-kinase activity (IC50 = 0.43 microgram/ml; 1.40 microM) but did not inhibit PtdIns 4-kinase or tested protein and lipid kinases. Analogs of LY294002 demonstrated a very selective structure-activity relationship, with slight changes in structure causing marked decreases in inhibition. LY294002 was shown to completely abolish PtdIns 3-kinase activity in fMet-Leu-Phe-stimulated human neutrophils, as well as inhibit proliferation of smooth muscle cells in cultured rabbit aortic segments. Since PtdIns 3-kinase appears to be centrally involved with growth factor signal transduction, the development of specific inhibitors against the kinase may be beneficial in the treatment of proliferative diseases as well as in elucidating the biological role of the kinase in cellular proliferation and growth factor response.  相似文献   

13.
Hepatocyte growth factor/scatter factor (HGF/SF) treatment of the Madin-Darby canine kidney epithelial cell line causes scattering of cells grown in monolayer culture and the formation of branching tubules by cells grown in collagen gels. HGF/SF causes prolonged activation of both the mitogen-activated protein (MAP) kinase extracellular signal-regulated kinase 2 (ERK2) and the phosphoinositide 3-OH kinase (PI 3-kinase) target protein kinase B (PKB)/Akt; inhibition of either the MAP kinase pathway by the MAP kinase/ERK kinase inhibitor PD98059 or the PI 3-kinase pathway by LY294002 blocks HGF/SF induction of scattering, although in morphologically distinct ways. Expression of constitutively activated PI 3-kinase, Ras, or R-Ras will cause scattering, but activated Raf will not, indicating that activation of the MAP kinase pathway is not sufficient for this response. Downstream of PI 3-kinase, activated PKB/Akt and Rac are both unable to induce scattering, implicating a novel pathway. Scattering induced by Ras or PI 3-kinase is sensitive to PD98059, as well as to LY294002, suggesting that basal MAP kinase activity is required, but not sufficient, for the scattering response. Induction of MDCK cell tubulogenesis in collagen gels by HGF/SF is inhibited by PD98059; expression of activated Ras and Raf causes disorganized growth in this system, but activated PI 3-kinase or R-Ras causes branching tubule formation similar to that seen with HGF/SF treatment. These data indicate that multiple signaling pathways acting downstream of Met and Ras are needed for these morphological effects; scattering is induced primarily by the PI 3-kinase pathway, which acts through effectors other than PKB/Akt or Rac and requires at least basal MAP kinase function. Elevated PI 3-kinase activity induces tubulogenesis, but total inhibition and excess activation of the MAP kinase pathway both oppose this effect.  相似文献   

14.
Stimulation of platelet thrombin receptors or protein kinase C causes fibrinogen-dependent aggregation that is a function of integrin alphaIIb beta3 activation. Such platelets rapidly and transiently form phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) and a small amount of phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P2). After aggregation, a larger amount of PtdIns(3,4)P2 is generated. We report that this latter PtdIns(3,4)P2 arises largely through wortmannin-inhibitable generation of PtdIns3P and then phosphorylation by PtdIns3P 4-kinase (PtdIns3P 4-K), a novel pathway apparently contingent upon the activation of the Ca2+-dependent protease calpain. Elevation of cytosolic Ca2+ by ionophore, without integrin/ligand binding, is insufficient to activate the pathway. PtdIns3P 4-K is not the recently described "PIP5KIIalpha." Cytoskeletal activities of phosphatidylinositol 3-kinase and PtdIns3P 4-K increase after aggregation. Prior to aggregation, PtdIns3P 4-K can be regulated negatively by the beta gamma subunit of heterotrimeric GTP-binding protein. After aggregation, PtdIns3P 4-K calpain-dependently loses its susceptibility to Gbeta gamma and is, in addition, activated. Both PtdIns(3,4,5)P3 and PtdIns(3,4)P2 have been shown to stimulate PKBalpha/Akt phosphorylation and activation by phosphoinositide-dependent kinase 1. We find that activation of PKBalpha/Akt in platelets is phosphorylation-dependent and biphasic; the initial phase is PtdIns(3,4,5)P3-dependent and more efficient, whereas the second phase depends upon PtdIns(3,4)P2 generated after aggregation. There is thus potential for both pre- and post-aggregation-dependent signaling by PKBalpha/Akt.  相似文献   

15.
Phosphorylation sites in members of the protein kinase A (PKA), PKG, and PKC kinase subfamily are conserved. Thus, the PKB kinase PDK1 may be responsible for the phosphorylation of PKC isotypes. PDK1 phosphorylated the activation loop sites of PKCzeta and PKCdelta in vitro and in a phosphoinositide 3-kinase (PI 3-kinase)-dependent manner in vivo in human embryonic kidney (293) cells. All members of the PKC family tested formed complexes with PDK1. PDK1-dependent phosphorylation of PKCdelta in vitro was stimulated by combined PKC and PDK1 activators. The activation loop phosphorylation of PKCdelta in response to serum stimulation of cells was PI 3-kinase-dependent and was enhanced by PDK1 coexpression.  相似文献   

16.
The small GTPase RhoA plays a critical role in signaling pathways activated by serum-derived factors, such as lysophosphatidic acid (LPA), including the formation of stress fibers in fibroblasts and neurite retraction and rounding of soma in neuronal cells. Previously, we have shown that ectopic expression of v-Crk, an SH2/SH3 domain-containing adapter proteins, in PC12 cells potentiates nerve growth factor (NGF)-induced neurite outgrowth and promotes the survival of cells when NGF is withdrawn. In the present study we show that, when cultured in 15% serum or lysophosphatidic acid-containing medium, the majority of v-Crk-expressing PC12 cells (v-CrkPC12 cells) display a flattened phenotype with broad lamellipodia and are refractory to NGF-induced neurite outgrowth unless serum is withdrawn. v-Crk-mediated cell flattening is inhibited by treatment of cells with C3 toxin or by mutation in the Crk SH2 or SH3 domain. Transient cotransfection of 293T cells with expression plasmids for p160ROCK (Rho-associated coiled-coil-containing kinase) and v-Crk, but not SH2 or SH3 mutants of v-Crk, results in hyperactivation of p160ROCK. Moreover, the level of phosphatidylinositol-4,5-bisphosphate is increased in v-CrkPC12 cells compared to the levels in mutant v-Crk-expressing cells or wild-type cells, consistent with PI(4)P5 kinase being a downstream target for Rho. Expression of v-Crk in PC12 cells does not result in activation of Rac- or Cdc42-dependent kinases PAK and S6 kinase, demonstrating specificity for Rho. In contrast to native PC12 cells, in which focal adhesions and actin stress fibers are not observed, immunohistochemical analysis of v-CrkPC12 cells reveals focal adhesion complexes which are formed at the periphery of the cell and are connected to actin cables. The formation of focal adhesions correlates with a concomitant upregulation in the expression of focal adhesion proteins FAK, paxillin, alpha3-integrin, and a higher-molecular-weight form of beta1-integrin. Our results indicate that v-Crk activates the Rho-signaling pathway and serves as a scaffolding protein during the assembly of focal adhesions in PC12 cells.  相似文献   

17.
18.
We have generated a novel rat TrkA receptor mutant (TrkAS3) by deletion of five conserved residues (493IMENP497) in the juxtamembrane domain. TrkAS3 receptors cannot support nerve growth factor (NGF)-induced cell cycle arrest or neuronal differentiation but retain cell survival responses as well as Ras-dependent mitogenic signaling. Cells of the nnr5 line stably expressing TrkAS3 induce NGF-dependent SHC phosphorylation and phosphatidylinositol 3-kinase, phospholipase Cgamma-1, and prolonged mitogen-activated protein kinase activation to absolute levels comparable to those in PC12 cells. Although the stoichiometry of TrkAS3-SHC binding is reduced, cells overexpressing TrkAS3 exhibit NGF-dependent SHC-Grb-2/Sos binding, essential for Ras activation, as well as NGF-dependent SNT phosphorylation to absolute levels comparable to those in PC12 cells. Collectively, these data suggest that the TrkAS3 deletion either directly affects a novel Ras-independent TrkA binding protein or that the decrease in TrkAS3-SHC association affects a Ras-independent SHC binding protein essential for cell cycle arrest and/or neurite outgrowth.  相似文献   

19.
Three members have been identified in the protein kinase B (PKB) family, i.e., Akt/PKB alpha, AKT2/PKB beta, and AKT3/PKB gamma. Previous studies have demonstrated that only AKT2 is predominantly involved in human malignancies and has oncogenic activity. However, the mechanism of transforming activity of AKT2 is still not well understood. Here, we demonstrate the activation of AKT2 with several growth factors, including epidermal growth factor, insulin-like growth factor 1, insulin-like growth factor II, basic fibroblast growth factor, platelet-derived growth factor, and insulin, in human ovarian epithelial cancer cells. The kinase activity and the phosphorylation of AKT2 were induced by the growth factors and blocked by the phosphatidylinositol (PI) 3-kinase inhibitor, wortmannin, and dominant-negative Ras (N17Ras). Moreover, the activated Ras and v-Src, two proteins that transduce growth factor-generated signals, also activated AKT2, and this activation was not significantly enhanced by growth factor stimulation but was abrogated by wortmannin. These results indicate that AKT2 is a downstream target of PI 3-kinase and that Ras and Src function upstream of PI 3-kinase and mediate the activation of AKT2 by growth factors. The findings also provide further evidence that AKT2, in cooperation with Ras and Src, is important in the development of some human malignancies.  相似文献   

20.
Vanadate and pervanadate (pV) are protein tyrosine phosphatase (PTP) inhibitors that mimic insulin to stimulate glucose transport. To determine whether phosphatidylinositol (PI) 3-kinase is required for vanadate and pV, as it is for insulin, cultured L6 myotubes were treated with vanadate and pV. The two compounds stimulated glucose transport to levels similar to those stimulated by insulin; however, while PI 3-kinase activity and the increase in the lipid products PI 3,4-bisphosphate and PI 3,4,5-trisphosphate were inhibited by wortmannin after stimulation by all three agents--insulin, vanadate, and pV--wortmannin blocked glucose transport stimulated by insulin but not vanadate or pV. Vanadate and pV stimulated the translocation of GLUTs from an intracellular compartment to the plasma membrane; this stimulation was not blocked by wortmannin, but insulin-induced GLUT translocation was inhibited. Similar results were obtained in cultured H9c2 cardiac muscle cells in which wortmannin did not inhibit glucose transport or the vanadate-induced translocation of GLUT4 in c-myc-GLUT4 transfected cells. The ser/thr kinase PKB (Akt/PKB/RAC-PK) is activated by insulin, lies downstream of PI 3-kinase, and has been implicated in signaling of glucose transport. Insulin and pV stimulated PKB activity, and both were inhibited by wortmannin. In contrast, vanadate, at concentrations that maximally stimulated glucose transport, did not significantly increase PKB activity. To determine the potential role of protein kinase C (PKC), L6 cells were incubated chronically with phorbol myristate acetate (PMA) or acutely with the PKC inhibitors calphostin C and bisindolylmaleimide. There was no inhibition of glucose transport stimulation by insulin, vanadate, or pV, and a combination of wortmannin and PKC inhibitors also failed to block the effect of vanadate and pV. In contrast, disassembly of the actin network with cytochalasin D blocked the stimulation of glucose transport by all three agents. In conclusion, vanadate and pV are able to stimulate glucose transport and GLUT translocation by a mechanism independent of PI 3-kinase and PKC. Similar to that by insulin, glucose transport stimulation by vanadate and pV requires the presence of an intact actin network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号