共查询到20条相似文献,搜索用时 15 毫秒
1.
With the price decreasing of the pneumatic proportional valve and the high performance micro controller, the simple structure and high tracking performance pneumatic servo system demonstrates more application potential in many fields. However, most existing control methods with high tracking performance need to know the model information and to use pressure sensor. This limits the application of the pneumatic servo system. An adaptive backstepping slide mode control method is proposed for pneumatic position servo system. The proposed method designs adaptive slide mode controller using backstepping design technique. The controller parameter adaptive law is derived from Lyapunov analysis to guarantee the stability of the system. A theorem is testified to show that the state of closed-loop system is uniformly bounded, and the closed-loop system is stable. The advantages of the proposed method include that system dynamic model parameters are not required for the controller design, uncertain parameters bounds are not need, and the bulk and expensive pressure sensor is not needed as well. Experimental results show that the designed controller can achieve better tracking performance, as compared with some existing methods. 相似文献
2.
针对强非线性、大俯仰角运动的水下运载器纵向运动轨迹跟踪问题提出了一类非线性自适应控制方案.首先,直接采用非线性运动模型,在控制器设计过程中引入饱和函数,通过麦克劳林展开公式避免了俯仰角为小角度的假设限制;其次,考虑到运载器非线性运动模型很难给出精确的数学描述并且实际运载器系统存在模型误差,采用在线自适应方法近似逼近其非线性模型;最后,利用Backstepping方法设计了非线性自适应控制器,并利用Lyapunov理论证明了控制系统的稳定性.半实物仿真结果表明:在考虑测量噪声和参数不确定性的情况下,该算法对给出的3种轨迹的跟踪误差均小于0.5m,俯仰舵偏均小于15°,俯仰力矩均在105 N.m量级.结果验证了本文提出的控制系统鲁棒性强,满足跟踪性能要求. 相似文献
3.
为了进一步提高光电跟踪系统的目标捕获和跟踪性能,提出了一种基于变增益趋近律的级联滑模控制方法。基于反双曲正弦函数和幂次项设计了新型变增益滑模趋近律,在提高滑模面趋近速度的同时抑制滑模抖振现象;基于变增益滑模趋近律设计速度环和位置环滑模控制器构成级联滑模控制,以提高系统的动态响应性能和鲁棒性,提高系统对目标的捕获能力和跟踪精度。最后,以某球形光电跟踪系统的方位轴作为控制对象,进行了传统级联PI控制和级联滑模控制方法的对比分析。实验结果表明,相比于传统级联PI控制,捕获速度为1(°)/s的目标时,级联滑模控制可以将目标捕获时间减小32%;跟踪等效最大速度为4(°)/s和最大加速度为2(°)/s 2的正弦引导信号,可将跟踪误差RMS值减小31%,采用级联滑模控制可有效提高跟踪系统的控制性能。 相似文献
4.
5.
Lin Darui Wang Xiuye Yang Guolai Yuan Shusen Sun Qinqin 《Journal of Mechanical Science and Technology》2022,36(10):4967-4978
Journal of Mechanical Science and Technology - This article addresses a problem of dynamic friction compensation for fully electric pitch system of tank based on modified LuGre model. Aiming to... 相似文献
6.
数控技术的发展要求伺服进给系统具有高带宽、强的扰动抑制能力和鲁棒性,以取得高精度的轨迹跟踪性能.设计了一种具有鲁棒性的自适应滑模控制器,利用一阶共振陷波滤波器抑制系统的共振,同时在控制环中加入摩擦前馈补偿,提高进给运动反向时的精度.最后通过实验和仿真比较了各种控制策略的优劣,验证了提出的带有摩擦力前馈补偿和陷波滤波器的滑模控制策略不仅可以获得高精度的加工轨迹,而且具有良好的抗干扰性和鲁棒性. 相似文献
7.
The problem of spacecraft attitude regulation based on the reaction of arm motion has attracted extensive attentions from both engineering and academic fields.Most of the solutions of the manipulator’s motion tracking problem just achieve asymptotical stabilization performance,so that these controllers cannot realize precise attitude regulation because of the existence of non-holonomic constraints.Thus,sliding mode control algorithms are adopted to stabilize the tracking error with zero transient process.Due to the switching effects of the variable structure controller,once the tracking error reaches the designed hyper-plane,it will be restricted to this plane permanently even with the existence of external disturbances.Thus,precise attitude regulation can be achieved.Furthermore,taking the non-zero initial tracking errors and chattering phenomenon into consideration,saturation functions are used to replace sign functions to smooth the control torques.The relations between the upper bounds of tracking errors and the controller parameters are derived to reveal physical characteristic of the controller.Mathematical models of free-floating space manipulator are established and simulations are conducted in the end.The results show that the spacecraft’s attitude can be regulated to the position as desired by using the proposed algorithm,the steady state error is 0.000 2 rad.In addition,the joint tracking trajectory is smooth,the joint tracking errors converges to zero quickly with a satisfactory continuous joint control input.The proposed research provides a feasible solution for spacecraft attitude regulation by using arm motion,and improves the precision of the spacecraft attitude regulation. 相似文献
8.
模拟转台伺服系统的自适应模糊滑模控制研究 总被引:1,自引:0,他引:1
利用Stribeck摩擦模型,将自适应控制与模糊滑模控制相结合,提出了自适应模糊滑模控制模型,对模拟转台伺服系统进行了控制。仿真结果表明,自适应模糊滑模控制器能有效抑制摩擦力矩的影响,实现高精度的位置跟踪,鲁棒性好,值得在其他非线性系统中推广使用。 相似文献
9.
10.
11.
A new model-based predictive control algorithm for vehicle trajectory control is proposed by using vehicle velocity and sideslip
angle. Based on the error function combined with vehicle velocity and side slip of a bicycle model, a predictive control method
has been proven to be useful on low velocity. Thus, it could be applied for an autonomous vehicle without a driver. Although
an autonomous robot is not necessary to be driven with a high velocity, a commercial vehicle has to be driven at high velocity.
Thus the previous predictive control formulation is not enough for a commercial driving system. This study is proposed to
enhance the capacity of the predictive controller for rather high speed vehicles.
This paper was presented at the 4th Asian Conference on Multibody Dynamics(ACMD2008), Jeju, Korea, August 20–23, 2008.
Mr. Jeong-Han Lee is pursuing a Ph.D. degree in Mechanical Engineering at Pusan National University under the supervision of professor Wan-Suk
Yoo. His research interests are focused on the area of adaptive control using multibody dynamics.
Dr. Wan-Suk Yoo received his Ph.D. degree in 1985 from the University of Iowa. In 1994, he became a full professor at the Pusan National
University, and he was selected an ASME fellow. He is serving as a vicepresident of the KSME. 相似文献
12.
针对液压挖掘机器人工作装置和液压系统高度非线性,单一的控制策略不能实现有效精确控制的特点。提出了挖掘机器人轨迹跟踪控制的综合策略。在传统的轨迹规划器中,加入了轨迹优化模块;在关节伺服控制中,采用了基于规则的智能PID控制策略;在泵控制中,采用了改进的负流量节能控制技术。实验结果证实了这种方案的有效性,可以在很大程度上提高挖掘机器人的轨迹跟踪精度,使操作更加平稳。 相似文献
13.
Ji-Seong Jang 《Journal of Mechanical Science and Technology》2005,19(5):1107-1115
In this study, a position and force simultaneous trajectory tracking control algorithm is proposed for a driving apparatus
that consists of two pneumatic cylinders connected in series. The controller applied to the driving apparatus is composed
of a non-interaction controller to compensate for interaction between cylinders and a disturbance observer aimed to reduce
the effect of model discrepancy that cannot be compensated by the non-interaction controller. The effectiveness of the proposed
control algorithm is proved by experimental results. 相似文献
14.
电液位置伺服系统的自适应滑模鲁棒跟踪控制 总被引:2,自引:0,他引:2
针对存在参数不确定性的电液位置伺服系统的跟踪控制问题,基于滑模控制理论,提出了一种具有参数自适应能力的自适应滑模控制方法。通过自适应方法,来消除参数不确定性对系统控制性能的影响,进而实现鲁棒控制。基于李雅普诺夫稳定性理论证明了自适应滑模控制系统的渐近稳定性。将该方法应用于某疲劳试验机电液伺服系统的跟踪控制,仿真和实时控制结果证明了该方法的有效性。 相似文献
15.
为实现机电伺服系统的高精度位置跟踪控制,针对实际系统运行过程中所存在的转动惯量和负载力矩变化大等各种不确定因素,提出了一种基于滑模面的自适应模糊PID策略。利用梯度下降法实时修正PID控制器的参数,使用模糊逻辑系统逼近系统中不确定量,以使控制器能根据伺服系统运行过程中的负载特性实时调整速度给定值,从而减小系统参数变化和外部干扰对伺服系统性能的影响,最后通过Lyapunov方法推导出了模糊补偿器中不确定参数的自适应律。仿真结果表明:该控制策略与传统PID控制相比具有系统跟踪误差小,响应速度快,跟踪性能好的优点,对参数摄动及外界负载扰动具有较强的鲁棒性。 相似文献
16.
17.
应用复合正交神经网络来实现过程的自适应逆控制方法,和通用模型控制器策略相结合,提出了一种基于神经网络的通用模型自适应控制方法,将非线性过程模型应用逆系统的方法可以在控制算法中直接嵌入过程模型,从而保证通用模型控制策略的可实现性.另一方面,在自适应逆控制中采用复合正交神经网络具有算法简单、学习收敛速度快等优点,可以克服常用的BP和RBF神经网络一些缺点.基于神经网络的通用模型自适应控制方法中的参考轨迹是一条典型的二阶曲线,该控制器参数具有明显的物理意义,参数整定方便.仿真验证了该控制策略的有效性. 相似文献
18.
In this paper, a new Adaptive Fuzzy Predictive Sliding Mode Control (AFP-SMC) is presented for nonlinear systems with uncertain dynamics and unknown input delay. The control unit consists of a fuzzy inference system to approximate the ideal linearization control, together with a switching strategy to compensate for the estimation errors. Also, an adaptive fuzzy predictor is used to estimate the future values of the system states to compensate for the time delay. The adaptation laws are used to tune the controller and predictor parameters, which guarantee the stability based on a Lyapunov-Krasovskii functional. To evaluate the method effectiveness, the simulation and experiment on an overhead crane system are presented. According to the obtained results, AFP-SMC can effectively control the uncertain nonlinear systems, subject to input delays of known bound. 相似文献
19.
In this paper, mobile manipulator is divided into two subsystems, that is, nonholonomic mobile platform subsystem and holonomic manipulator subsystem. First, the kinematic controller of the mobile platform is derived to obtain a desired velocity. Second, regarding the coupling between the two subsystems as disturbances, Lyapunov functions of the two subsystems are designed respectively. Third, a robust adaptive tracking controller is proposed to deal with the unknown upper bounds of parameter uncertainties and disturbances. According to the Lyapunov stability theory, the derived robust adaptive controller guarantees global stability of the closed-loop system, and the tracking errors and adaptive coefficient errors are all bounded. Finally, simulation results show that the proposed robust adaptive tracking controller for nonholonomic mobile manipulator is effective and has good tracking capacity. 相似文献
20.
This paper deals with the robust asymptotic stabilization for a class of nonlinear singularly perturbed systems using the fuzzy sliding mode control technique. In the proposed approach the original system is decomposed into two subsystems as slow and fast models by the singularly perturbed method. The composite fuzzy sliding mode controller is designed for stabilizing the full order system by combining separately designed slow and fast fuzzy sliding mode controllers. The two-time scale design approach minimizes the effect of boundary layer system on the full order system. A stability analysis allows us to provide sufficient conditions for the asymptotic stability of the full order closed-loop system. The simulation results show improved system performance of the proposed controller as compared to existing methods. The experimentation results validate the effectiveness of the proposed controller. 相似文献