首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Polypropylene-graft-polystyrene (PP-g-PS) was synthesized by the coupling reaction of brominated polypropylene produced by metallocene-catalyzed copolymerization of propylene with 11-bromo-1-undecene and polystyryl lithium salts made by living anionic polymerization, for the first time. These structures were confirmed by 1H NMR analysis. TEM micrographs of PP-g-PS copolymers indicated the nanometer level microphase-separation morphology between the polypropylene segment and the polystyrene segment. Obtained PP-g-PS copolymers could work as an effective compatibilizer for PP and PS.  相似文献   

2.
Two new naphthalene-ring-containing bis(ester-amine)s, 2,3-bis(4-aminobenzoyloxy)naphthalene (p-2) and 2,3-bis(3-aminobenzoyloxy)naphthalene (m-2), were prepared from the condensation of 2,3-dihydroxynaphthalene with 4-nitrobenzoyl chloride and 3-nitrobenzoyl chloride, respectively, followed by catalytic hydrogenation. The novel aromatic poly(ester-amide)s and poly(ester-imide)s having 2,3-linked bis(benzoyloxy)naphthalene units have been synthesized from the polycondensation reactions of bis(ester-amine)s (p-2 and m-2) or an equimolar mixture of 4,4′-oxydianiline and p-2 or m-2 with various aromatic dicarboxylic acids and dianhydrides. The synthesis of the poly(ester-amide)s was achieved by the phosphorylation polyamidation reaction by means of triphenyl phosphate, and the synthesis of the poly(ester-imide)s included ring-opening polyaddition to give poly(amic acid)s followed by chemical imidization to polyimides. Most of the poly(ester-amide)s were readily soluble in various organic solvents. Six poly(ester-amide)s and two poly(ester-imide)s derived from less rigid diacids and dianhydrides, respectively, were amorphous and could be solution-cast into transparent and tough films with good mechanical properties. Most of the poly(ester-amide)s displayed discernible glass-transition temperatures (T gs) between 192 and 223 °C in the DSC traces. All of the poly(ester-imide)s, except for one sample, showed clear T g values between 225 and 265 °C by DSC. These poly(ester-imide)s showed excellent thermal stability with 10 wt% loss temperatures above 460 °C in nitrogen or air.  相似文献   

3.
The use of nanoclays as additives for polymer matrices requires, in some cases (with non-polar matrices) the use of a compatibilizer agent which will act as a bridge or permanent buffer for nanoclay-matrix interaction. In this research, we have worked on the improvement of mechanical and thermal properties of polypropylene matrices by adding montmorillonite based nanoclays (MMT) which have been previously modified with an organic component (a quaternary ammonium salt modifier). In this particular case, we have worked on the optimization of the compatibilizer:nanoclay ratio. As a compatibilizer agent it has been used a propylene graft maleic anhydride copolymer (PP-g-MA) and the PP-g-MA:MMT ratio has varied from 0.25:1 to 4:1. Nanoclay dispersion and intercalation–exfoliation degree has been investigated by X-ray diffraction spectroscopy (XRD) and transmission electron microscopy (TEM). Also, mechanical and thermal properties for different PP-g-MA:MMT ratios have been determined. The results show optimum dispersion and intercalation–exfoliation levels for PP-g-MA:MMT ratios close to 3:1 and 4:1 and also we can observe a slight increase in mechanical and especially in thermal properties for similar ratios.  相似文献   

4.
Among modified Poly(propylene)s (PPs) grafted with polar monomers, PP grafted with maleic anhydride (PP-g-MAH) is known to be the most efficient compatibilizer for PP/clay nanocomposites, since it provides well-dispersed nanostructures and yields optimal physical properties of the nanocomposites. One drawback of this material, however, is that it becomes brittle and its viscosity decreases drastically, leading to nanocomposites with low toughness as the graft degree of MAH increases. Therefore, there is a limitation to increasing both stiffness and toughness of PP/clay nanocomposites with PP-g-MAH. In this study, we investigated the performance of a PP grafted with maleic anhydride and styrene (PP-g-MAH-St) as compatibilizers in PP/clay nanocomposites. It was found that the incorporation of styrene as a comonomer prevents molecular weight reduction of the PP main chain upon high loading of a radical initiator for high graft degree of MAH. The compatibilizers (PP-g-MAH-St) thus obtained show good compatibilizing performance in PP/clay nanocomposites. The PP/clay nanocomposites compatibilized by PP-g-MAH-St show both high stiffness and toughness, which is accomplished by using a compatibilizer of higher viscosity compared with PP-g-MAH.  相似文献   

5.
Surface modification of polypropylene (PP) films was achieved using gamma-irradiation-induced grafting to provide an adequate surface capable of carrying glycopeptide antibiotics. The copolymer was obtained following a versatile two-step route; pristine PP was exposed to gamma rays and grafted with methyl methacrylate (MMA), and afterward, the film was grafted with N-vinylimidazole (NVI) by simultaneous irradiation. Characterization included Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), and physicochemical analysis of swelling and contact angle. The new material (PP-g-MMA)-g-NVI was loaded with vancomycin to quantify the release by UV-vis spectrophotometry at different pH. The surface of (PP-g-MMA)-g-NVI exhibited pH-responsiveness and moderate hydrophilicity, which are suitable properties for controlled drug release.  相似文献   

6.
Radiation‐induced graft polymerization of acrylic acid (AAc) on poly(3‐hydroxybutyric acid) (PHB) film was carried out and the resulting film was thermally‐remolded. The PHB films grafted with AAc (PHB‐g‐AAc) having a degree of grafting higher than 5% completely lost the enzymatic degradability. The enzymatic degradability of the grafted film was recovered by thermal remolding. The highest enzymatic degradation rate was observed at degree of grafting of 10% after thermal remolding. The PHB‐g‐AAc films and thermally‐remolded PHB‐g‐AAc films were characterized by contact angle and differential scanning calorimetry. The enzymatic degradability of PHB‐g‐AAc films was lost by the grafted AAc, which covered the surface of PHB film. The acceleration of enzymatic degradation in the remolded PHB‐g‐AAc films was mainly caused by decrease of crystallinity of PHB by dispread of grafted AAc during thermal remolding. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3856–3861, 2006  相似文献   

7.
Surface‐modified polypropylene (PP) films with thermally and photochemically sensitive copolymers consisting of N‐(2‐hydroxypropyl)methacrylamide (HPMA) and 4‐(4‐methoxyphenylazo)phenyl methacrylate (MPAP), poly(HPMA‐co‐MPAP)‐g‐PP (abbreviated g‐PP) film, were prepared by graft copolymerization with an Ar‐plasma postpolymerization technique. The surfaces of the g‐PP films were characterized by means of X‐ray photoelectron spectroscopy; the percentage grafting of poly(HPMA‐co‐MPAP) with a number‐average molecular weight of 3.28 × 104 was 7.12%, and the molar ratio of HPMA–MPAH in the copolymer was 0.75:0.25. The stimuli‐sensitive adsorption of albumin and polystyrene microspheres on the g‐PP film was also measured. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 143–148, 2003  相似文献   

8.
The objective of this work is to study the properties of blends that could result from the recycling of end-of-life vehicles (ELV). While ethylene propylene rubber (EPR) and ethylene propylene diene monomer (EPDM) have been used extensively as elastomeric additives in poly(propylene) (PP), they can be substituted by ethylene-1-octene copolymer (EOC). As a consequence, the matter resulting from the sorting of ELV might be more complex and made of PP, EPR, and EOC. The effect of incorporating EOC [that is a polyethylene elastomer (PEE)] and maleic anhydride grafted polypropylene (PP-g-MAH) on the rheological, thermal, and morphological properties of PP/EPR blends has been investigated. Blends of various compositions (with and without compatibilizer) were prepared using a corotating twin-screw extruder. The results were compared to the ones presented by a commercial (PP/EPR) blend. The EPR phase is dispersed in the form of spherical particles in (PP/EPR). The EOC phase is dispersed in the form of aggregated particles. Dynamic viscoelastic and differential scanning calorimetry properties of (PP/EPR)/EOC blends shows the incompatibility of the components even in presence of PP-g-MAH copolymer. POLYM. ENG. SCI., 47:1009–1015, 2007. © 2007 Society of Plastics Engineers  相似文献   

9.
The dynamic mechanical properties of both homopolypropylene (PPVC)/Maleated Poly-propylene (PP-g-MA) and ethylene-propylene block copolymer (PPSC)/Maleated Poly-propylene (PP-g-MA) blends have been studied by using a dynamic mechanical thermal analyzer (PL-DMTA MKII) over a wide temperature range, covering a frequency zone from 0.3 to 30 Hz. With increasing content of PP-g-MA, α relaxation of both blends gradually shift to a lower temperature and the apparent activation energy ΔEα increases. In PPVC/PP-g-MA blends, β relaxation shifts to a higher temperature as the content of PP-g-MA increases from 0 to 20 wt % and then change unobviously for further varying content of PP-g-MA from 20 to 35 wt %. On the contrary, in the PPSC/PP-g-MA blends β1 relaxation, the apparent activation energy ΔEβ1 and β2 relaxation are almost unchanged with blend composition, while ΔEβ2 increases with an increase of PP-g-MA content. In the composition range studied, storage modulus É value for PPSC/PP-g-MA blends decreases progressively between β2 and α relaxation with increasing temperature, but in the region the increment for PPVC/PP-g-MA blends is independent of temperature. The flexural properties of PPVC/PP-g-MA blend show more obvious improvement on PP than one of PPSC/PP-g-MA blends. Scanning electron micrographs of fracture surfaces of the blends clearly demonstrate two-phase morphology, viz. the discrete particles homogeneously disperse in the continous phase, the main difference in the morphology between both blends is that the interaction between the particles and the continuous phase is stronger for for PPVC/PP-g-MA than for PPSC/PP-g-MA blend. By the correlation of the morphology with dynamic and mechanical properties of the blends, the variation of the relaxation behavior and mechanical properties with the componenet structure, blend composition, vibration frequency, and as well as the features observed in these variation are reasonably interpreted. © 1996 John Wiley & Sons, Inc.  相似文献   

10.
The synthesis of graft copolymers by the grafting “onto” process in the molten state was described. Functional oligomers obtained by telomerization or by ATRP were reacted onto maleic anhydride grafted polypropylene (PP-g-MAH) and poly(ethylene-ter-maleic anhydride-ter-methyl acrylate) (P(E-ter-MAH-ter-MeA)) to obtain PP-g-PMMA and P(E-ter-MAH-ter-MeA)-g-PMMA graft copolymers, respectively. The grafting of different mono-functional oligomers bearing hydroxyl, aliphatic amine or aromatic amine functions was investigated at 180 °C and at 200 °C. The grafting efficiency was very low in the case of hydroxyl-terminated PMMA, while the amine-terminated PMMA led to high yields. In the last part, PP-g-PMMA and P(E-ter-MAH-ter-MeA)-g-PMMA graft copolymers were synthesized by the reaction of aliphatic amine functional PMMA oligomers onto PP-g-MAH and P(E-ter-MAH-ter-MeA), respectively. The influence of the molecular weight of PMMA oligomers was investigated and showed that he grafting efficiency slightly decreases with the increasing molecular weight. However, this process allows the synthesis of PP-g-PMMA graft copolymers containing 6-45 wt% of PMMA side chains. The microstructure of the nanostructured PP-g-PMMA and P(E-ter-MAH-ter-MeA)-g-PMMA graft copolymers was investigated by TEM and SEM. This was established that the addition of PP-g-PMMA in PP/PMMA binary blends allows to control their morphologies and stabilities.  相似文献   

11.
Polyacrylamide homopolymers and graft copolymers of poly(acrylamide-g-ethylene oxide) and poly(acrylamide-g-propylene oxide) were synthesized, characterized by SEC, FTIR and 13C-NMR and the behavior of their aqueous solutions was evaluated by surface tension measurements. By using the macromonomer technique, it is more difficult to incorporate poly(propylene oxide) branches than poly(ethylene oxide) branches. Graft copolymers of polyacrylamide and poly(propylene oxide) showed higher reduction of surface tension than poly(acrylamide-g-ethylene oxide) since they present a structure made up of hydrophilic and hydrophobic segments. Poly(acrylamide-g-propylene oxide) exhibits surfactant behavior, and the surface tension of its aqueous solution depends on the poly(propylene oxide) graft chain length and amount. Received: 9 December 1996/Revised: 15 May 1997/Accepted: 23 May 1997  相似文献   

12.
Summary New π-conjugated polyquinoxalines with aromatic fused rings in their side chain have been prepared. Dehalogenative organometallic polycondensation of 5,8-dibromo[2,3-b]-acenaphthenequinoxaline and 5,8-dibromo[2,3-b]phenanthrenequinoxaline with a zerovalent nickel complex afforded poly([2,3-b]acenaphthenequinoxaline-5,8-diyl) (P(5,8-Qx(ace))) and poly([2,3-b]phenanthrenequinoxaline-5-8-diyl) (P(5,8-Qx(phen))) in high yields. P(5, 8-Qx(ace)) had an [η] value of 0.23 dL g−1 and showed absorption and photoluminescence peaks at 445 and 565 nm, respectively. (P(5,8-Qx(phen))) gave absorption and photoluminescence peaks at 400 and 514 nm, respectively. XRD data indicated formation of ordered structures of the polymers in the solid. Preparation of related copolymer with thiophene is also reported. Received: 15 February 2000/Accepted: 2 March 2000  相似文献   

13.
The spray-freeze drying (SFD) technique was applied to sonicated aqueous suspensions of spray-dried montmorillonite clay (MMT) to produce highly porous agglomerates (SFD-MMT). Both MMT (used as a reference) and SFD-MMT were subsequently incorporated in polypropylene (PP) via melt compounding to produce 2 wt % nanocomposites with and without maleic anhydride grafted polypropylene (PP-g-MA). Polypropylene nanocomposites containing SFD-MMT exhibited thinner silicate flake layers compared to large agglomerates in PP/MMT nanocomposites. SFD-MMT particles became even more finer in the presence of PP-g-MA (i.e., in PP/PP-g-MA /SFD-MMT) where it hindered PP crystallization instead of serving as nucleation sites for the PP crystallization during rapid cooling. SFD-MMT improved the thermal stability of PP/PP-g-MA by 30°C compared to only 5–8°C for MMT/nanocomposites. MMT acts as a heterogeneous nucleating agent in the nucleation-controlled PP nanocomposites, but the hindrance effect was observed for the PP/PP-g-MA with SFD-MMT. PP/PP-g-MA/SFD-MMT exhibited twice the edge surface energy as compared to PP/PP-g-MA/MMT. The incorporation of both types of MMT raised the tensile moduli of PP and PP/PP-g-MA, with no improvement in their tensile strength and a decrease in the elongation at break. The PP/PP-g-MA/SFD-MMT showed brittle failure. POLYM. ENG. SCI., 60:168–179, 2020. © 2019 Society of Plastics Engineers  相似文献   

14.
Poly(α-methylstyrene) (PMS) macromonomer having one vinylbenzyl group per polymer chain was prepared by the couplings of living PMS with p-chloromethylstyrene (CMS). Subsequently, well-defined poly[acrylic acid (AA)-g-α-methylstyrene (MS)] and poly[4-vinylpyridine (4VP)-g-MS] graft copolymers composed of polyelectrolyte trunks were prepared by radical copolymerization of PMS macromonomer with AA and 4VP monomers, respectively. Binary poly(AA-g-MS)/poly(4VP-g-MS) or poly[AA · triethyl amine (Et3N) salt-g-MS)/poly(4VP-g-MS) graft copolymer blend films were cast from a benzene/methanol mixture. The morphological results of binary graft copolymer blends are discussed with respect to three-phase separated structures.  相似文献   

15.
Polypropylene (PP)–silicon dioxide (SiO2) compound microporous membranes were fabricated by a melt-stretching method. Although the permeability, porosity, and hydrophilicity values of the microporous membranes were found to be highest at an SiO2 content of 2 wt %, the heat resistance of the membranes was relatively low. To improve the heat resistance of the microporous membranes, a macromolecular coupling agent, PP-g-poly(α-methyl styrene-co-glycidyl methacrylate-co-γ-methacryloxypropyl trimethoxy silane) (PAGK), was introduced into the membrane. In the PP–PP-g-PAGK–SiO2 composite systems, the content of SiO2 was controlled at 2 wt %, and the proportion of PP-g-PAGK was varied. With increasing PP-g-PAGK content to 0.6%, the Gurley value decreased from 250 to 239 s, and the porosity increased from 50.8 to 51.6%. The hydrophilicity of the microporous membranes increased with the incorporation of PP-g-PAGK, and their water vapor transmission rate reached a maximum of 3360 g m−2/24 h at a PP-g-PAGK content of 0.6%. The heat resistance of the PP–PP-g-PAGK–SiO2 compound microporous membranes was slightly higher than that of the pure PP microporous membrane. Additionally, the cycle performance of a cell assembled with the PP–PP-g-PAGK–SiO2 membrane was better than that constructed with the pure PP membrane. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47937.  相似文献   

16.
A family of amphiphilic graft copolymers were prepared from a maleated polypropylene (PP-g-MA) and various crystalline poly(oxyethylene)-segmented amines of 1000 to 3000 molecular weight. Structurally, these copolymers consist of polypropylene (PP) backbone and several crystalline poly(oxyethylene) (POE) pendants in the structure. In the observation of their phase behaviors by using a differential scanning calorimeter (DSC), the interference between the POE segments and PP backbone was found. In a particular case (PP-g-MA/ED-2001), the heat of POE crystallization did not show off in the cooling curve of the DSC, but appeared during the consecutive heating process. Generally, heating and cooling patterns of the DSC analyses showed the shifts of melting and crystallizing temperatures, depending on the length and the termini of POE, from those of the starting materials— PP-g-MA and POE amines. The TGA and optical microscopy observation further supported the DSC analyses.  相似文献   

17.
A novel macromolecular surface modifier, polypropylene-grafted-poly(ethylene glycol) copolymer (PP-g-PEG), was synthesized by coupling polypropylene containing maleic anhydride with monohydroxyl-terminated poly(ethylene glycol). The effects of the reaction condition on the graft reactions were studied. The copolymers were characterized by IR, 1H NMR, thermogravimetry (TG) and differential scanning calorimetry (DSC). The results indicated that the graft reactions were hindered by increasing the molecular weight of PP or PEG. The graft copolymer was found to have a higher initial thermal degradation temperature and lower crystallization capacity as compared with pure PP, and the side chain of PEG hindered the PP chain from forming a perfect β crystal. The thermal stability of PP-g-PEG decreased with the increasing content or molecular weight of PEG. The copolymers were blended with polypropylene to modify the surface hydrophilicity of the products. The results of attenuated total reflectance FTIR spectroscopy (ATR-FTIR) showed that PP-g-PEG could diffuse preferably onto the surface of the blends and be suitable as an effectual macromolecular surface modifier for PP. __________ Translated from Acta Polymerica Sinica, 2007, (2): 203–208 [译自:高分子学报]  相似文献   

18.
Polypropylene-graft-poly(polyethylene glycol-methacrylate) (PP-g-P(PEGMA)), which is a hydrophobic-hydrophilic graft copolymer, was synthesized by a combination of an atom transfer radical polymerization (ATRP) of PEGMA with brominated polypropylene (PP-Br), which was synthesized from PP-OH prepared by metallocene-catalyzed copolymerization. Its structure was confirmed by 1H NMR and GPC analyses. Transmission electron microscope (TEM) micrographs of PP-g-P(PEGMA) revealed the nanometer level microphase-separation morphology between the PP segment and the P(PEGMA) segment. The obtained PP-g-P(PEGMA) showed water-absorbing property as well as thermostability.  相似文献   

19.
Silicon oxide (SiOx) film deposition on the surface of oriented poly(propylene) (OPP) films was done to form a new oxygen gas barrier material using plasma polymerization of the tetramethoxysilane (TMOS)/O2 mixture. The SiOx film deposition on OPP films never improved oxygen gas barrier properties. The inefficacy of the SiOx deposition was due to poor adhesion at the interface between the deposited SiOx and OPP films and also to the formation of cracks in the deposited SiOx film. If prior to the SiOx film deposition surface modification of OPP films was done by a combination of the argon plasma treatment and TMOS coupling treatment, this contributed effectively to strong adhesion leading to success in the SiOx deposition on the OPP film surface, and then the oxygen gas barrier ability was improved. The oxygen permeation rate through the SiOx‐deposited OPP film was decreased from 2230 to 37–52 cm3/m2/day/atm, which was comparable to that of poly(vinylidene chloride), 55 cm3/m2/day/atm at a film thickness of 11 μm. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 2389–2397, 2000  相似文献   

20.
The sorption kinetics and equilibria of n-hexane in glassy polyblends of polystyrene and poly(2,6 dimethyl-1,4 phenylene oxide) were studied as a function of annealing conditions. Cast film samples were annealed 20°C above their respective glass transition temperatures for two hours and twenty-four hours. The rate of relaxation-controlled (Case II) sorption of n-hexane in these films was reduced markedly consequent to annealing. The effect of annealing on the sorption kinetics and the independently determined film densities was more pronounced for the poly(phenylene oxide)-rich samples. Although sorption rates were reduced by as much as a factor of 100, the sorption equilibrium was insignificantly affected by annealing. Super Case II transport was observed for the slow absorbing annealed samples whereas the more rapid sorption in the unannealed samples followed ideal Case II kinetics. The more pronounced effects of annealing for the poly(phenylene oxide)-rich samples on sorption rates and film densities were explained by considering the increasing difference between the film Tg and the drying temperature used in the original film preparation for the poly(phenylene oxide)-rich samples. These results suggest that glassy polymers, cast and dried well below their glass transition temperatures, will be subject to large long-term reductions in absorption rates and specific volume. Moreover, residual, excess free volume significantly affects relaxation-controlled absorption of vapors in partially annealed glassy polymers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号