首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
The durability of the nano-Al2O3 enhanced glass fiber reinforced polymer (GFRP) composites in hydrothermal environment is necessary for hydro/hygro thermal applications. The present investigation emphasizes the effect of nano-Al2O3 filler concentration on moisture absorption kinetics, residual mechanical and thermal properties of hydrothermally treated GFRP nano-composites. Nano-Al2O3 particles were mixed with epoxy matrix through temperature assisted magnetic stirrer and followed by ultrasonic treatment. It has been observed that, the addition of 0.1 wt% of nano-Al2O3 into the GFRP nano-composites reduces the moisture diffusion coefficient by 10%, as well as improves the flexural residual strength by 16% and interlaminar residual shear strength by 17% as compared to the neat epoxy GFRP composites. However, the glass transition temperature has not been improved by the addition of nano-Al2O3 filler. Weibull design parameters have been determined for dry and hydrothermally conditioned nano-composites. A good agreement between the experimental and the simulated stress–strain results has been observed. The interface failure mechanism has been evaluated by field emission scanning electron microscope to support the new findings.  相似文献   

2.
The effect of Fe ion concentration on the morphological, structural, and optical properties of TiO2 films supported on silica (SiO2) opals has been studied. TiO2:Fe2O3 films were prepared by the sol-gel method in combination with a vertical dip coating procedure; precursor solutions of Ti and Fe were deposited on a monolayer of SiO2 opals previously deposited on a glass substrate by the same procedure. After the dip coating process has been carried out, the samples were thermally treated to obtain the TiO2:Fe2O3/SiO2 composites at the Fe ion concentrations of 1, 3, and 5 wt%. Scanning electron microscopy (SEM) micrographs show the formation of colloidal silica microspheres of about 50 nm diameter autoensembled in a hexagonal close-packed fashion. Although the X-ray diffractograms show no significant effect of Fe ion concentration on the crystal structure of TiO2, the μ-Raman and reflectance spectra do show that the intensity of a phonon vibration mode and the energy bandgap of TiO2 decrease as the Fe+3 ion concentration increases.  相似文献   

3.
The performance of carbon fiber-reinforced composites largely depends on the properties of the fiber-matrix interface. Here, to improve the interfacial strength properties of carbon fiber/epoxy composites, we doped different concentrations of Fe2O3/graphene nanosheets onto the interfacial region of the carbon fiber composites by nano-coating technology. With the aid of the magnetic field, the arrangement of nanosheets could be controlled in the interface. The nanosheets can be arranged on the carbon fiber surface parallel or perpendicularly with different concentrations. The tensile strength and interfacial shear strength of the modified fiber microcomposites had increased by 22.1 and 44.4% respectively with 1.0 mg/mL Fe2O3/graphene nanosheets. The results indicated that the Fe2O3/graphene nanosheets have an important influence on the carbon fibers and carbon fibers composites.  相似文献   

4.
The TiO2 nanoparticles were modified by diblock copolymers, poly(methyl methacrylate)-b-polystyrene (PMMA-b-PS), via reversible addition-fragmentation chain transfer (RAFT) polymerization, and the epoxy nanocomposites containing different TiO2 and with different contents were prepared. Subsequently, the effects of TiO2 content on the mechanical and thermal properties of nanocomposites were investigated. The results indicated that after grafting copolymers onto TiO2, the dispersion of TiO2 and interaction with epoxy matrix could be significantly increased, therefore, the mechanical properties of the nanocomposites were improved greatly. When the TiO2-PMMA-b-PS content was 1 wt%, the impact strength and flexural strength reached their the best, and increased up to 96% and 43%, respectively. Furthermore, the thermal stability of the nanocomposites was also distinctly improved.  相似文献   

5.
Ag/Al2O3 catalysts with 1 wt% SiO2 or TiO2 doping in alumina support have been prepared by wet impregnation method and tested for sulphur tolerance during the selective catalytic reduction (SCR) of NOx using propene under lean conditions. Ag/Al2O3 showed 44% NOx conversion at 623 K, which was drastically reduced to 21% when exposed to 20 ppm SO2. When Al2O3 support in Ag/Al2O3 was doped with 1 wt% SiO2 or TiO2 the NOx conversion remained constant in presence of SO2 showing the improved sulphur tolerance of these catalysts. Subsequent water addition does not induce significant deactivation. On the contrary, a slight promotional effect on the activity of NO conversion to nitrogen is observed after Si and Ti incorporation. FTIR study showed the sulphation of silver and aluminum sites of Ag/Al2O3 catalysts resulting in the decrease in the formation of reactive intermediate species such as –NCO, which in turn decreases NOx conversion to N2. In the case of Ag/Al2O3 doped with SiO2 or TiO2, formation of silver sulphate and aluminum sulphate was drastically reduced, which was evident in FTIR resulting in remarkable improvement in the sulphur tolerance of Ag/Al2O3 catalyst. These catalysts before and after the reaction have been characterized with various techniques (XRD, BET surface area, transmittance FTIR and pyridine adsorption) for physico-chemical properties.  相似文献   

6.
The sintering characteristics, phase composition, and microwave dielectric properties of Nb2O5-added 0.9Al2O3–0.1TiO2 ceramics sintered at 1300–1500 °C have been investigated. Results show that Nb5+ and Al3+ can co-substitute for Ti4+ and form Ti0.8Al0.1Nb0.1O2, which can lower effectively the sintering temperature, and improve the quality factor of 0.9Al2O3–0.1TiO2 ceramics.  相似文献   

7.
The effect of lithium (ex LiNO3) on the metallic dispersion of 0.8 wt% Pt/Al2O3 catalysts, prepared by different impregnation techniques, was investigated by temperature programmed reduction (TPR) and the frontal method of H2 chemisorption. The temperature at which platinum precursor is reduced at a maximum rate (543 K) was not modified by 0.1 wt% lithium addition, whatever the preparation technique used. The dispersion values of platinum (70–90%), after reduction at 773 K, were slightly dependent on the preparation procedure. After the addition of 0.8 wt% lithium the TPR profile presented two well defind peaks and the dispersion values (20–50%), measured after reduction at 773 K, presented a significant decrease. The results are linked with the presence of residual nitrate ions, that had not been eliminated during calcination at 773 K in air, but had been decomposed under the reducing atmosphere of the TPR experiment.  相似文献   

8.
ABSTRACT

Ti3AlC2/Al2O3 composite materials were successfully fabricated from TiO2/TiC/Ti/Al powders by the in situ reactive hot pressed technique. The microstructure, mechanical and oxidation properties of the composites were investigated in the paper. Vickers hardness increased with the Al2O3 content. The relative density of Ti3AlC2/Al2O3 composites exhibits a declining tendency with Al2O3 content especially exceeds 10 vol.?%. The Ti3AlC2/Al2O3 composites show excellent electrical conductivity. The flexural strength and fracture toughness of Ti3AlC2/10 vol. % Al2O3 are 461 ± 20?MPa and 6.2?±?0.2?MPa m1/2, respectively. The cyclic oxidation behaviour of resistance of Ti3AlC2/10 vol. % Al2O3 composites at 800–1000°C generally obeys a parabolic law. The oxide scale of sample consists of a mass of α-Al2O3 and TiO2, forming a dense and adhesive protect layer. The result indicates that the Al2O3 can greatly improve the oxidation resistance of Ti3AlC2.  相似文献   

9.
A series of catalysts, NiSO4/Al2O3–TiO2, for acid catalysis was prepared by the impregnation method, where support, Al2O3–TiO2 was prepared by the coprecipitation method using a mixed aqueous solution of titanium tetrachloride and aluminum nitrate solution followed by adding an aqueous ammonia solution. The addition of nickel sulfate (or Al2O3) to TiO2 shifted the phase transition of TiO2 from amorphous to anatase to higher temperature because of the interaction between nickel sulfate (or Al2O3) and TiO2. 15-NiSO4/5-Al2O3–TiO2 containing 15 wt% NiSO4 and 5 mol% Al2O3, and calcined at 400°C exhibited maximum catalytic activities for both reactions, 2-propanol dehydration and cumene dealkylation. The catalytic activities for both reactions were correlated with the acidity of catalysts measured by the ammonia chemisorption method. The charge transfer from Ti atoms to the neighboring Al atoms strengthens the Al–O bond between Al and the surface sulfate species. The addition of Al2O3 up to 5 mol% enhanced the acidity, thermal property, and catalytic activities of NiSO4/Al2O3–TiO2 gradually due to the interaction between Al2O3 and TiO2 and consequent formation of Al–O–Ti bond.  相似文献   

10.
A novel Al2O3-coated SnO2/TiO2 composite electrode has been applied to the dye-sensitized solar cell. In such an electrode, two kinds of energy barriers (SnO2/TiO2 and TiO2/Al2O3) were designed to suppress the recombination processes of the photo-generated electrons and holes. After the SnO2 was modified by colloid TiO2, the photoelectric conversion efficiency of the SnO2/TiO2 composite cell increased to 2.08% by a factor of 2.8 comparing with that of the SnO2 cell. The Al2O3 layer on the SnO2/TiO2 composite electrode further suppressed the generation of the dark current, resulting in 37% improvement in device performance comparing with the SnO2/TiO2 cell.  相似文献   

11.
For an electrochemical water splitting system, titanate nanotubular particles with a thickness of ∼700 nm produced by a hydrothermal process were repetitively coated on fluorine-doped tin oxide (FTO) glass via layer-by-layer self-assembly method. The obtained titanate/FTO films were dipped in aqueous Fe solution, followed by heat treatment for crystallization at 500 °C for 10 min in air. The UV–vis absorbance of the Fe-oxide/titanate/FTO film showed a red-shifted spectrum compared with the TiO2/FTO coated film; this red shift was achieved by the formation of thin hematite-Fe2O3 and anatase-TiO2 phases verified using X-ray diffraction and Raman results. The cyclic voltammetry results of the Fe2O3/TiO2/FTO films showed distinct reversible cycle characteristics with large oxidation–reduction peaks with low onset voltage of IV characteristics under UV–vis light illumination. The prepared Fe2O3/TiO2/FTO film showed much higher photocurrent densities for more efficient water splitting under UV–vis light illumination than did the Fe2O3/FTO film. Its maximum photocurrent was almost 3.5 times higher than that obtained with Fe2O3/FTO film because of the easy electron collection in the current collector. The large current collection was due to the existence of a TiO2 base layer beneath the Fe2O3 layer.  相似文献   

12.
In this work, α-Fe2O3 nanoparticles was synthesized, terminal-epoxide functionalized by using 3-glycidoxypropyltrimethoxysilane (GPS) coupling agent, characterized by FT-IR, X-ray diffraction, TGA and particle size analyzer and used in preparation of nanocomposites with epoxy resin (DGEBA) using different weight fractions (2–11 wt%). TEM and SEM were used to observe particle dispersion in the resin matrix and to investigate the fractured surface of nanocomposites for evidence of extrinsic toughening mechanism. The mechanical and thermo-mechanical properties of nanocomposites prepared from DGEBA and modified epoxide-terminated α-Fe2O3 were compared with the properties of untreated α-Fe2O3/DGEBA nanocomposites and neat DGEBA. The modified α-Fe2O3/DGEBA nanocomposites showed improvement in properties such as glass transition temperature (Tg) and tensile, flexural and impact strength. These improvements are due to better dispersion of epoxide-terminated α-Fe2O3 particles in the resin matrix and enhanced interfacial adhesion between DGEBA and α-Fe2O3 phases.  相似文献   

13.
Ni/Co co-doping Fe3O4/TiO2 magnetic core–shell nanocomposites (wt% varied amount of dopants) have been prepared by sol-gel method at low temperature. X-ray diffraction, Fourier transform infrared, energy dispersive X-ray spectroscopy, scanning electron microscopy, transmission electron microscopy, inductively coupled plasma optical emission spectroscopy and vibrating sample magnetometry studies have been made to investigate the crystalline structure, morphology and magnetic properties of these composites. The prepared Ni/Co co-doping Fe3O4/TiO2 nanocomposites exhibit high degree of crystallinity and suitable magnetic properties at room temperature. Their use has been made in effective photocatalytic degradation of Amlodipine a pharmaceutical contaminant under UV light irradiation at 365 nm. The results have shown that wt% amount of dopants, calcination time, calcination temperature and pH of the Amlodipine aqueous solution are important factors in degradation efficiency of Amlodipine. The optimal weight ratios of Ni and Co to Ti were 0.015%. The nanocomposites can be recovered from the aqueous system easily by using a magnet. Their photocatalytic degradation activity for Amlodipine drug remained 94.43% after five times of repetitive use.  相似文献   

14.
《应用陶瓷进展》2013,112(4):234-239
Abstract

In the present study, the effect of temperature and oxidising agents such as Fe2O3 and Co3O4 on physical and mechanical properties of glass foam is investigated. The glass foam is made of panel glass from dismantled cathode ray tubes and SiC as a foaming agent. In the process, powdered waste glass (mean particle size below 63 μm) in addition to 4 wt-% SiC powder (mean particle size below 45 μm) are combined with Fe2O3 and Co3O4 (0·4, 0·8 and 1·2 wt-%) have been sintered at 950 and 1050°C. The glass foamed containing 1·2 wt-% Co3O4 has good physical properties, with porosity more than 80% and bending strength more than 1·57±0·12 MPa. However, by adding different amounts of Fe2O3 in comparison with samples without iron oxide, little changes in porosity and strength are obtained.  相似文献   

15.
A porous glass tube with a composition of 96SiO2·4B2O3 (wt%) supported TiO2 shows high photooxidation activity due to its transparency and large surface area. The surface area of the porous glass tube supported TiO2 is 10,000 times larger than that of conventional materials. TiO2 crystals supported are anatase type. Transparency of the porous glass tube is very important. Herein, sol–gel and chemical vapor deposition (CVD) processes were employed as TiO2 supporting processes. CVD process is more effective. For instance, an aqueous methylene blue solution with 1 ppm concentration almost thoroughly decomposes at a contact time of 300 s using porous glass tube supported TiO2 prepared by CVD process under irradiating with 10 W low-pressure mercury lamp, on the other hand, opaque porous alumina tube supported TiO2 was only 25%. The smaller the pore size of the porous glass tube, the larger the transparency and the permeation resistance through porous glass tube. Hence, porous glass tube with ca. 40 nm pore diameter is suitable from the standpoint of a practical use.  相似文献   

16.
Heterogeneous photocatalysis is a significant green technology for application in water purification. The application of Nb2O5 catalyst for the photodegradation of contaminants is few reported in the literature. Thus, the Nb2O5 catalyst was characterized by SEM, FTIR, surface area and charge surface density. This catalyst was applied to degrade indigo carmine dye, which was compared with degradation catalyzed by TiO2 and ZnO. Almost 100% of dye degradation occurred at 20, 45 and 90 min for TiO2, ZnO and Nb2O5, respectively. The effect of Nb2O5 catalyst concentration, pH and ionic strength (μ) was investigated. The Nb2O5 activity increased at 0.7 g/L and for higher catalyst concentrations the degradation was kept constant. Degradation of indigo carmine dye catalyzed by Nb2O5 was improved at pH < 4.0 and μ = 0.05 mol/L. TiO2, ZnO and Nb2O5 were recovered and re-applied in other nine reaction cycles. While TiO2 and ZnO have an abrupt loss of their catalytic activity, Nb2O5 maintained 85% of catalytic activity after 10 reaction cycles.  相似文献   

17.
This article reports a study on the effect of TiO2 nanoparticles on the adhesion strength of steel–glass/epoxy composite joints bonded with two-part structural acrylic adhesives. The introduction of nano-TiO2 in the two-part acrylic adhesive led to a remarkable enhancement in the shear and tensile strength of the composite joints. The shear and tensile strengths of the adhesive joints increased with adding the filler content up to 3 wt.%, after which it decreased with adding more filler content. Also, addition of nanoparticles caused a reduction in the peel strength of the joints. Differential scanning calorimeter analysis revealed that glass transition temperature (Tg) values of the adhesives rose with increasing the nano-filler content. The equilibrium water contact angle decreased for adhesives containing nanoparticles. Scanning electron microscope micrographs revealed that addition of nanoparticles altered the fracture morphology from smooth to rough fracture surfaces.  相似文献   

18.
To fabricate Al2O3 ceramic components with complex shape, selective laser sintering (SLS) combined with cold isostatic pressing (CIP) process was used to consolidate Al2O3 powder with additive of epoxy resin E06 (ER06) and polyvinyl alcohol (PVA). The starting material preparation combined spray drying with mechanical mixing to formulate compound powder consisting of PVA (1.5 wt%), ER06 (8 wt%) and Al2O3 and provide a good fluidity for SLS. Experimental investigations were carried the shrinkage, relative density, bending strength of Al2O3-ER06 SLS specimens in order to optimize the laser sintering parameters. It was found that Al2O3-ER06 SLS specimens represented acceptable shrinkage, high density and bending strength when laser power, scanning speed, scanning space and layer thickness were, respectively, 21 W, 1600 mm/s, 100 μm and 150 μm. Following that, the SLS specimens were processed through CIP to eliminate the pores in green ceramics. Finally, the optimized SLS/CIP Al2O3 specimens were debinded, sintered to produce crack-free Al2O3 bodies. The final Al2O3 components achieved a relative high density of more than 92% after furnace sintering. The study shows a novel and promising approach to fabricate complex ceramic matrix and ceramic components via indirect SLS and CIP process.  相似文献   

19.
Catalytic combustion of benzene over supported metal oxides has been investigated. The catalysts have been prepared by incipient wetness method and characterized by XRD, FT-Raman, ESR and TPR. Among supported metal oxides, CuOx, supported on TiO2 is found to have the highest activity for benzene oxidation. In addition, among the catalysts of copper oxide supported on TiO2, A12O3 and SiO2, titania-supported catalyst (CuOx/TiO2) gives the highest catalytic activity. CuOx/TiO2 (Cu loading 5.5 wt%) shows the total oxidation of benzene at about 250 °C. From the ESR and FT-Raman results, the CuO dispersed on the TiO2 surface acts as an active site of CuOx/TiO2 catalysts on the oxidative decomposition of benzene. The catalytic activity gradually increases with an increase of Cu loading on TiO2. When Cu loading reaches 5.5 wt%, the total conversion temperature is lowered to 300 °C. However, the catalytic activity considerably decreases at 7 wt% Cu loading. The catalytic activity increased with an increase of oxygen concentration but the concentration of benzene showed no difference in the benzene conversion. This result suggests that the rate determining step is the adsorption of oxygen.  相似文献   

20.
In this paper, we report a facile method for the preparation of TiO2/polyacrylate/TiO2 multilayer core–shell hybrid emulsion through polymerization. The chemical compositions of the copolymer were studied with Fourier transform infrared. TEM images reveal that nanocomposites show different core–shell structures with different TiO2 contents. As the weight percentage of TiO2 is 2 wt% (based on monomer, same below), there are no TiO2 cores in some nanocomposites. When TiO2 increases to 3 wt%, the TiO2/polymer/TiO2 multilayer core–shell composite particles are prepared. But the TiO2 shells disappeared when the TiO2 content kept increasing. TGA shows that the TiO2 dispersed in latex films uniformly and the thermal stabilization improved with increasing TiO2 contents. The effect of operating variables such as polymerization temperature and the concentrations of polymerizable emulsifier, initiator, extremely hydrophilic monomer, modified TiO2 and HD on the kinetic behaviors was investigated. The formation mechanism of TiO2/polymer/TiO2 multilayer core–shell structure was inferred.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号