首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
采用超声分散与机械搅拌混合方法制备了埃洛石纳米管(HNTs)/水性环氧树脂复合材料。通过TEM、SEM对HNTs及复合材料进行了表征,并分析了HNTs含量对水性环氧树脂乳液的流变行为、乳胶膜的热稳定性及涂膜性能的影响。结果表明:HNTs可在水性环氧树脂体系中均匀分散,使复合材料由脆性断裂转变为韧性断裂;但当w(HNTs)5%时,复合材料出现明显团聚,最佳添加量为w(HNTs)=2%,此时复合体系的热稳定性增强,热分解温度由358℃提高到365℃,剪切速率为10 s-1时,黏度由0.73 Pa·s增加到0.85 Pa·s;HNTs起到类交联点的作用;储能模量提高了8.1倍,内耗降低,复合体系呈现假塑性和明显的触变性,稳定性增强,水性环氧树脂乳胶膜的耐水性得到改善,与未添加HNTs的环氧树脂相比,当w(HNTs)=5%时,吸水率由27.8%降低到15.9%,涂膜的硬度由3H提高到4H,柔韧性由1 mm提高到0.5 mm。但当w(HNTs)5%时,体系结构与稳定性会被破坏,导致涂膜综合性能下降。  相似文献   

2.
通过熔融混炼法制备了聚氯乙烯(PVC)/埃洛石纳米管(HNTs)复合材料,通过力学性能测试和扫描电子显微镜、透射电子显微镜等方法研究了HNTs含量对复合材料形貌与性能的影响,并分析了HNTs的作用机理。结果表明,HNTs可以对PVC产生增强增韧的作用;PVC/HNTs复合材料的储能模量和玻璃化转变温度相对纯PVC均有所增加;不同含量的HNTs在PVC基体中的分散性均较好且无大面积团聚的现象;HNTs与PVC间具有较强的界面作用力,其界面作用半经验参数(B)值为4.35。  相似文献   

3.
This article explores the synergistic effect of halloysite nanotubes along with maleic anhydride grafted polyethylene on the physical, mechanical, and thermo-mechanical properties of polycarbonate/cyclic olefin copolymer polymer blend system. Halloysite nanotubes filled polycarbonate/cyclic olefin copolymer blend nanocomposites were prepared in the presence and absence of polymeric compatibilizer by melt blending. Besides the constructive outcome of nanotubular fillers, the maleic anhydride grafted polyethylene played a complementary role in improving the properties of the nanocomposites. Structural changes of blend matrix, nanofiller distributions, nanofiller-polymer matrix interaction, nucleating effect, storage modulus, and thermal stability were widely investigated with various sophisticated instruments.  相似文献   

4.
Poly(vinyl chloride) (PVC)/halloysite nanotubes (HNTs) nanocomposites were prepared by melt blending. Transmission electron microscopy (TEM) results showed that HNTs were uniformly dispersed in the PVC matrix. The thermal properties of PVC/HNTs nanocomposites were investigated in detail. The apparent activation energies (Ea) were analyzed by means of Kissinger and Flynn-Wall-Ozawa methods. Thermogravimetric analysis results showed that the thermal properties of PVC/HNTs nanocomposites were improved. Cone calorimetry was used to measure the smoke evolution and fire properties. The addition of HNTs led to a remarkable reduction in the smoke production rate, the total smoke production, and the peak heat release rate.  相似文献   

5.
Various HNTs loading filled SMR L and ENR 50 were prepared. Addition of HNTs caused increments in scorch time, cure time, tensile modulus, and thermal stability of nanocomposites. Optimum tensile strength of nanocomposites was achieved at 20 phr loading. Elongation at break, swelling percentage, and fatigue life decreased with increasing HNTs loading. ENR 50 nanocomposites show shorter scorch time, longer cure time, and lower curing rate index than SMR L nanocomposites. ENR 50 nanocomposites also show higher tensile modulus and thermal stability than SMR L nanocomposites. SEM images show that HNTs can be dispersed more uniformly at lower filler loading.  相似文献   

6.
Herein, a simple melt-blending method is utilized to disperse of halloysite nanotubes (HNTs) in polystyrene/polyolefin elastomer (PS/POE) blends. Based on morphological studies, the PS/POE/HNT nanocomposite containing up to 3 phr HNTs shows excellent nanofiller dispersion, while those filled with 5 phr HNTs exhibit nanofiller aggregation. To overcome the nanofiller aggregation issue, the polypropylene-grafted-maleic anhydride (PP-g-MA) compatibilizer is added to the PS/POE/HNT nanocomposite, which results in improved mechanical properties for the nanocomposite sheets. Furthermore, the addition of compatibilized HNTs to the PS/POE blends leads to decreased O2 and N2 gas permeabilities. Besides, incorporating POE, HNTs, and PP-g-MA leads to a decrease in water vapor transmission of PS. In the end, the experimentally-determined mechanical properties and gas permeabilities of the nanocomposite sheets are compared to those predicted by prevalent theoretical models, revealing a good agreement between the experimental and theoretical results. Molecular-dynamics simulations are also carried out to calculate the gas diffusion coefficients in the different sheets to further support the experimental findings in this study. Overall, the PS/POE/HNT/PP-g-MA nanocomposite sheets fabricated in this work demonstrate excellent mechanical and gas barrier properties; and hence, can be used as candidate packaging materials. However, the strength of the resulting PS/POE blend may be inferior to that of the virgin PS.  相似文献   

7.
Poly(lactic acid)/poly(methyl methacrylate) blends containing halloysite nanotube (2 and 5 phr) and epoxidized natural rubber (5–15 phr) were prepared by melt mixing. The impact strength of poly(lactic acid)/poly(methyl methacrylate) blend was slightly improved by the addition of halloysite nanotube. Adding epoxidized natural rubber further increased the impact strength of poly(lactic acid)/poly(methyl methacrylate)/halloysite nanotube nanocomposite. Single Tg of poly(lactic acid)/poly(methyl methacrylate) is observed and this indicates that poly(lactic acid)/poly(methyl methacrylate) blend is miscible. The addition of halloysite nanotube into poly(lactic acid)/poly(methyl methacrylate) slightly increased the Tg of the blends. The epoxidized natural rubber could encapsulate some of the halloysite nanotube and prevent the halloysite nanotube from breaking into shorter length tube during the melt shearing process.  相似文献   

8.
PVC/MBS/埃洛石纳米管复合材料的制备及其性能   总被引:1,自引:1,他引:0  
采用熔融共混法制备了聚氯乙烯(PVC)/甲基丙烯酸甲酯-丁二烯-苯乙烯共聚物(MBS)/埃洛石纳米管(HNTs)三元复合材料,研究了HNTs对PVC/MBS共混体系力学性能、热性能和微观结构的影响。结果表明:HNTs与MBS可协同增韧PVC,使复合材料的强度和刚性得到改善,当HNTs的填充量为3 phr时,PVC/MBS(100/3)共混体系的冲击强度、拉伸强度、弯曲强度和弯曲模量分别提高了57.7%、12.1%、7.6%和45.9%;其冲击断面呈现韧性断裂特征;TEM观察结果发现,HNTs在PVC/MBS共混体系中具有良好的分散状态;热失重分析显示,HNTs对PVC/MBS共混体系热稳定性的提高能起到一定作用。  相似文献   

9.
10.
采用原子转移自由基聚合的方法将聚乙二醇(PEG)接枝到多壁碳纳米管(MWNTs)上,然后利用平板硫化机制备出聚甲醛(POM)/MWNTs-PEG复合材料。利用扫描电子显微镜、透射电子显微镜、红外光谱和热重分析对MWNTs-PEG进行表征。通过差式扫描量热仪研究了该复合材料结晶行为的变化,用Jeziorny法和Mo法对其进行非等温结晶动力学分析。结果表明,PEG均匀接枝到MWNTs上;MWNTs-PEG的加入具有异相成核的作用,使POM结晶温度向高温区移动,结晶速率提高,半结晶时间缩短;结晶速率常数值增加,F(T)值降低;有效结晶活化能降低;MWNTs-PEG最终起到促进POM结晶的作用。  相似文献   

11.
Halloysite nanotubes (HNTs)-filled natural rubber (NR) nanocomposites with various filler loading were prepared by using a two-roll mill. The addition of HNTs increased the scorch time, cure time and maximum torque but reduced curing rate index. The tensile strength increased up to 20 phr of HNTs and then decreased. When HNTs loading increased, the elongations of break, swelling percentage and fatigue life were decreased while modulus at 100% and 300% elongation and thermal properties showed inversely. The dispersion of HNTs inside the NR matrix is shown from SEM images.  相似文献   

12.
Glutaraldehyde (GA) crosslinked polyvinyl alcohol (PVA)/chitosan (CS)/halloysite nanotube (HNT) composite films were prepared using a wet casting method. The tensile, morphology, thermal degradation, swelling, moisture, and oxidative degradation properties of crosslinked composite films were carried out. The presences of crosslinking in the composite films were confirmed by FTIR result. The tensile strength of the crosslinked composite films increased up to 0.5 wt% of HNTs loading. Increasing HNTs reduced the thermal degradation, swelling, and moisture properties of crosslinked composite films reduced with the increase of HNTs content. Results also indicated that the crosslinked composite films were degraded using Fenton reagent.  相似文献   

13.
采用微波辐射法制备埃洛石纳米管(HNTs)负载CeO_2-CdS复合材料CeO_2-CdS/HNTs。用X射线衍射、透射电子显微镜、紫外-可见漫反射光谱、Fourier变换红外光谱等对CeO_2-CdS/HNTs样品结构和形貌进行表征,考察了可见光下降解亚甲基蓝的光催化活性,讨论了CeO_2/CdS摩尔比对光催化剂活性的影响。结果表明:纳米颗粒CeO_2、CdS以紧密结合的形式牢固的负载在HNTs表面,二者具有协同催化作用。当CeO_2/CdS摩尔比为3:7时,80 min内亚甲基蓝的降解率可达95%。  相似文献   

14.
Poor flame retardancy of polyurethane foam (PUF) limits its practical application in many fields. Here, flame‐retardant performance of PUF is improved by a simple dip‐coating method. Halloysite nanotube (HNT) coating can be uniformly bonded to PUF surfaces via hydrogen‐bonding interactions, which is confirmed by element mapping and X‐ray photoelectron spectra. Density and mechanical properties of PUF increase with the concentration of HNT suspension, while porosity of the foam decreases with HNT loading. Weight ratio of HNTs to PUF in the composite can be achieved as high as 65.2%. Surfaces of PUF transfer from hydrophobic to super‐hydrophilic after HNT coating, and the water contact angle decreases from 116° to 0° after HNT coating. As a result, methylene blue adsorption capacity of HNTs‐coated PUF increases from 0.02 to 0.15 mg g?1, and adsorption efficiency can reach 98% after 10 s. HNT coating can prevent PUF from burning and dripping, which suggests that flame‐retardant performance of PUF is significantly improved by HNTs. This work establishes a general procedure for improving flame retardancy and dye absorbency of polymer materials by simple dip‐coating of environmental‐friendly clay nanotubes, which shows great potential in high‐performance polymer and functional composite materials.  相似文献   

15.
The properties of acrylonitrile-butadiene rubber (NBR) composites were studied at five different compositions of NBR/HNTs/Silica or NBR/HNTs/CB (i.e., 100/5/0, 100/4/1, 100/3/2, 100/2/3, 100/0/5 parts per hundred rubber (phr)). The tensile strength and modulus (M100) of both composites decreased, whereas elongation at break increased and maximum torque with increasing the silica or carbon black content. However, both composites show opposite trends for cure time and scorch time, where NBR/HNTs/Silica composite exhibited an increasing trend, while NBR/HNTs/CB composite shows the decreasing trend. The rubber-filler interaction studies showed that carbon black is a more reinforcing filler than silica.  相似文献   

16.
Polymer nanocomposites based on PET and with an intercalated and fairly dispersed nanostructure have been obtained in the melt state. The intercalation and dispersion levels, as well as the mechanical properties, were studied by varying the chemical nature and amount of the organic modification of the clay, as well as the clay content. The intercalation level of PET into the organoclay galleries was measured by following the increase in the interlayer distance upon mixing. The surfactant content did not influence the intercalation level but an interaction between the polymeric matrix and the surfactant, through a common polar character, led to improved intercalation. The modulus increases observed, and consequently the overall dispersion, almost did not depend on either the amount or the chemical nature of the organic modification of the clay used, suggesting that the parameters leading to a high degree of intercalation differ from those which lead to a high modulus of elasticity and therefore to a high dispersion level. The obtained increases in the modulus of elasticity that reflect the dispersion level were large, attaining a 41% increase with respect to that of the matrix after a 6 wt.‐% clay addition.

  相似文献   


17.
通过分子结构设计,合成了一系列提高MBS粉末特性的包裹剂,研究了抗聚结新型MBS的制备工艺以及包裹剂化学结构对MBS粉末特性及PVC/MBS共混物力学性能的影响。结果表明,加入包裹剂后,MBS粉末流动性及其堆积密度均有较大提高,而且显著提高PVC/MBS共混物的抗冲强度和抗拉强度。  相似文献   

18.
Novel sepiolite-based poly(amide-imide) nanocomposites were prepared by in-situ polymerization via polycondensation of a diamine containing amide groups with hexafluoropropane dianhydride. The process involved dispersion of sepiolite in poly(amic acid) solution followed by thermal imidization to get ultimate nanocomposites. The morphology, thermal and mechanical performances of nanocomposites with various sepiolite contents were studied. Nanoparticles were homogenously dispersed throughout the matrix with 50–65 nm size range. Due to such dispersion, poly(amide-imide)-sepiolite nanocomposite films exhibited improvements on the thermal-mechanical properties. The best results arose from favorable miscibility between polymer and sepiolite in the nanocomposites when 3 wt.% nanoparticles were introduced into poly(amide-imide) matrix.  相似文献   

19.
采用原位复合方法,合成了不同多壁碳纳米管(MWNTs)含量的PET纳米复合物。实验中采用超声波辅助(方法A)和球磨辅助(方法B)两种分散方法?用扫描电子显微镜(SEM)、差示扫描量热分析fDSC)、Instron拉伸实验等手段对MWNTs及其在PET基质中的形态、复合物的熔融和结晶行为以及物理机械性能进行了袁征。结果表明:MWNTs能够均匀分散于PET中,且长径比较小的MWNTs的分散程度更好一些。聚合物熔体结晶过程中,MWNTs具有明显的成核作用,最大可使熔融结晶温度提高24.1℃。与纯PET材料相比,含0.4%MWNTs的PET复合材料(A—PET-4)的拉伸强度和杨氏模量分别提高约17%和25%,断裂仲长率则大幅度降低。  相似文献   

20.
Polypyrrole (PPy)/poly(pyrrole-co-acrylamide) (Poly(Py-co-AAm)/nanocomposite was prepared by a simple and inexpensive in-situ co-polymerization of pyrrole and acrylamide in the presence of Fe3O4 nanoparticles. The nanocomposites were characterized by FTIR, SEM, XRD, TGA, and conductivity measurements. The FTIR spectra ascertain the chemical interlinking of polypyrrole and copolymer with magnetite nanoparticles. The XRD revealed that crystallinity of the copolymer was increased with weight percentage of the magnetite nanoparticles. SEM analysis showed that the nanoparticles were well shaped and uniformly dispersed in the nanocomposites. Thermal stability and the electrical conductivity of the nanocomposite were higher than that of polypyrrole and the copolymer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号