首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Controlled-release grade hydroxypropylmethylcellulose (HPMC) or xanthan gum (XG) and microcrystalline cellulose (MCC) were employed to prepare controlled-release diltiazem hydrochloride tablets. The similarity factor f2 was used for dissolution profile comparison using Herbesser 90 SR as a reference product. Drug release could be sustained in a predictable manner by modifying the content of HPMC or XG. Moreover, the drug release profiles of tablets prepared using these matrix materials were not affected by pH and agitation rate. The f2 values showed that only one batch of tablets (of diltiazem HCl, HPMC or XG, and MCC in proportions of 3.0:3.0:4.0) was considered similar to that of the reference product, with values above 50. The unbiased similarity factor f*2 values were not much different from the f2 values, ascribing to a small dissolution variance of the test and reference products. The amount of HPMC or XG incorporated to produce tablets with the desired dissolution profile could be determined from the curves of f2 versus polymer content. Hence, the f2 values can be applied as screening and optimization tools during development of controlled-release preparations.  相似文献   

2.
Hydrophilic matrices are widely used for extended release drug delivery, with hypromellose (HPMC) being a popular rate-controlling carrier. The FDA has recently issued an alert regarding the potential negative influence of alcohol on extended release dosage forms.

The aim of this study was to investigate the hydroalcoholic solution effect on hydration, gel formation and drug release from HPMC matrices. None of the investigated matrix formulations (felodipine, gliclazide, and metformin hydrochloride) resulted in dose-dumping when exposed to ethanol solutions.

HPMC compacts made of three different viscosity grades of Methocel showed consistent swelling and gel formation when exposed to hydroalcoholic media.  相似文献   

3.
Objective: The purpose of this study was to develop hydroxypropylmethylcellulose (HPMC)-based sustained release (SR) tablets for tolterodine tartrate with a low drug release variation.

Methods: The SR tablets were prepared by formulating a combination of different grades of HPMC as the gelling agents. The comparative dissolution study for the HPMC-based SR tablet as a test and Detrusitol® SR capsule as a reference was carried out, and the bioequivalence study of the two products was also conducted in human volunteers.

Results: The amount of HPMC, the grade of HPMC and the combination ratio of different grades of HPMC had remarkable effects on drug release from the SR tablets. Both the test and reference products had no significant difference in terms of comparative dissolution patterns in four different media (f2 > 50). Furthermore, the dissolution method and rotation speed showed no effects on the drug release from the two products. The 90% confidence intervals of the AUC0–36 and Cmax ratios for the test and reference products were within the acceptable bioequivalence intervals of log0.8–log1.25.

Conclusions: A HPMC-based SR tablet for tolterodine tartrate with a low release variation was successfully developed, which was bioequivalent to Detrusitol® SR capsule.  相似文献   

4.
Buccoadhesive compacts (BCs) of pentazocine (PZ) were prepared by the direct compression method using polymers like carbopol 974P (CP 974P) and hydroxypropyl methylcellulose (HPMC K4M) in ratios of 1:0 (batch B1), 1:1 (B2), 1:2 (B3), 1:4 (B4), and 0:1 (B5). The compacts were evaluated for thickness uniformity, weight variation, drug content uniformity, and swelling index. Swelling was increased with an increase in HMPC K4M content in the compacts. An in vitro assembly was developed to measure and compare the bioadhesive strength of compacts. The maximum bioadhesive strength was observed in compacts formulated with a combination of CP 974P and HPMC K4M. The compacts were evaluated in vitro for 24 hr in pH 6.6 phosphate buffer using a standardized dissolution apparatus. The data were evaluated by a simple power equation (Mt/M = Ktn); it was observed that all the compacts followed non-Fickian release kinetics. Some of the buccoadhesive compacts were evaluated in vivo in rabbits. The compacts gave controlled blood level profiles with a twofold to threefold increase in area-under-the-curve (AUC) values in comparison to oral administration of aqueous drug solution.  相似文献   

5.
Objective: Venlafaxine is freely soluble In water and administered orally as hydrochloride salt In two to three divided doses. In the present investigation different release retarding matrices have been evaluated for sustained release of venlafaxine hydrochloride (VH) from the formulated tablets.

Materials and methods: Sustained release matrix tablets were formulated using different hydrophilic, hydrophobic and waxy materials as matrix formers. Tableting was done by pre-compression, direct compression and hot melt granulation depending on the type of matrix material used and evaluated for different tests. The formulated tablets were compared with commercial venlafaxine products. In vitro drug dissolution profiles were fitted In different mathematical models to elucidate the release mechanism.

Results: Dissolution data showed that commercial formulations Venlor XR® and Venfax PR® released the entire drug withIn 8?h where as the formulated tablets with hydroxypropylmethylcellulose (HPMC) and cetyl alcohol as matrix formers provided sustained release of drug for 14–15?h. The release was found to follow Hixson Crowel and Higuchi kinetics for HPMC and cetyl alcohol tablets, respectively.

Conclusion: The developed matrix tablet formulations with HPMC and cetyl alcohol provided sustained release profiles for prolonged periods than commercial formulations.  相似文献   

6.
The effect of cellulose ether polymer mixtures, containing both hydroxypropylcellulose (HPC) and hydroxypropylmethylcellulose (HPMC K15M or K100M), on ketoprofen (KTP) release from matrix tablets was investigated. In order to evaluate the compatibility between the matrix components, Raman spectroscopy, scanning electron microscopy (SEM), and X-ray powder diffraction (XRPD) experiments were performed. The results evidence the absence of significant intermolecular interactions that could eventually lead to an incompatibility between the drug and the different excipients. Formulations containing mixtures of polymers with both low and high viscosity grades were prepared by a direct compression method, by varying the polymer/polymer (w/w) ratio while keeping the drug amount incorporated in the solid dispersion constant (200?mg). The hardness values of different matrices were found within the range 113.8 to 154.9 N. HPLC analysis showed a drug content recovery between 99.3 and 102.1%, indicating that no KTP degradation occurred during the preparation process. All formulations attained a high hydration degree after the first hour, which is essential to allow the gel layer formation prior to tablet dissolution. Independent-model dissolution parameters such as t10% and t50% dissolution times, dissolution efficiency (DE), mean dissolution time (MDT), and area under curve (AUC) were calculated for all formulations. Zero-order, first-order, Higuchi, and Korsmeyer–Peppas kinetic models were employed to interpret the dissolution profiles: a predominantly Fickian diffusion release mechanism was obtained – with Korsmeyer–Peppas exponent values ranging from 0.216 to 0.555. The incorporation of HPC was thus found to play an essential role as a release modifier from HPMC containing tablets.  相似文献   

7.
ABSTRACT

The objective of this study was to develop modified-release tablets of diltiazem HCl using a direct compression technique. A 32 factorial design was employed using the amount of alkali-treated guar gum and cetyl alcohol as independent variables. This article proposes the use of a novel approach—f2and Sd values as dependent variables—to evaluate the effect of selected independent variables along with other dependent variables (i.e., percentage drug released in x min, Yx; time required for z% drug release, tz; and mean dissolution time (MDT)). It is concluded that when a decision is to be made for the selection of a best batch, it is perhaps more realistic to use the f2 or Sd value which takes into account the dissolution profile as a whole, as opposed to Yx and tz values which use just one point from the dissolution plot. The batch showing the f2 value nearest to 100 or the Sd value nearest to zero is ranked as the best batch (diltiazem HCl 90 mg, alkali-treated guar gum 80 mg and cetyl alcohol 15 mg). The gel strength and matrix erosion of the formulated tablets were dependent on the type and amount of the adjuvants. The drug release rate is well correlated with matrix erosion. The kinetics of drug release fitted best to the Korsmeyer and Peppas model. It is concluded that by using a proper combination of the hydrophilic polymer and cetyl alcohol one can achieve a desirable drug release pattern.  相似文献   

8.
ABSTRACT

This study investigates the effects of three factors: (1) use of a mixture of two different grades of hydroxypropyl methylcellulose (HPMC), (2) apparent viscosity, and (3) tablet hardness on drug release profiles of extended-release matrix tablets. The lot-to-lot apparent viscosity difference of HPMC K15M on in vitro dissolution was also investigated. Four test formulations were made, each containing 10% of a very water-soluble active pharmaceutical ingredient (API), 32% HPMC K15M, or a mixture of HPMC K100LV and HPMC K100M, 56% diluents, and 2% lubricants. Each formulation was made at two hardness levels. A 23 full factorial design was used to study various combinations of the three factors using eight experiments conducted in a randomized order. Dissolution studies were performed in USP apparatus I. The values of t50% (time in which 50% drug is released) and tlag (lag time, the time taken by the matrix tablet edges to get hydrated and achieve a state of quasi-equilibrium before erosion and the advance of solvent front through the matrix occur) were calculated from each dissolution profile. The similarity factor (f2) was also calculated for each dissolution profile against the target dissolution profile. A simple Higuchi-type equation was used to analyze the drug release profiles. Statistical analysis using analysis of variance (ANOVA) and similarity factor (f2) values calculated from the data indicated no significant difference among the t50% values and dissolution profiles respectively for all formulations. Within the 3.3–6 kp hardness range investigated, dissolution rates were found to be independent of tablet hardness for all the formulations. Although significantly shorter lag times were observed for the tablets formulated with low- and high-viscosity HPMC mixtures in comparison to those containing a single grade of HPMC, this change had no significant impact on the overall dissolution profiles indicated by the similarity factor f2 values. From this study it can be concluded that lot-to-lot variability in apparent viscosity of HPMC should not be a concern in achieving similar dissolution profiles. Also, results indicated that within the viscosity range studied (12,000–19,500 cps) an HPMC mixture of two viscosity grades can be substituted for another HPMC grade if the apparent viscosity is comparable. Also, the drug release is diffusion-controlled and depends mostly on the viscosity of the gel layer formed.  相似文献   

9.
Synthetic cubic boron nitride (CBN) compacts are an important tool material used extensively for the machining of hardened steels. The paper describes work on the synthesis and characterization of CBN compacts. A 200 tonne cubic press has been used for the generation of high pressures. Solid solutions of TiN and TiC have been used as the binder material. The CBN powder and the binder are homogenously mixed and the mixed powder is pressed in a steel die under a pressure of about 3 kbars (300 M Pa). The pellets so formed are the starting material for synthesizing the compacts. Compacts both with and without a tungsten carbide substrate have been synthesized. The best compacts are formed at 58kbar (5.8 G Pa) and 1450° C. The sintered compacts after grinding and polishing are characterized by using powder X-ray diffraction, scanning electron microscopy and energy-dispersive X-ray analysis. Knoop hardness measurements made on the best CBN compacts give a hardness of 3400HK 0.5.  相似文献   

10.
Background: The aim of this study was to evaluate matrix tablets containing different ratios of Carbopol® 971P (CP) to low-viscosity sodium alginate (SA) and assess their suitability for pH-independent controlled drug release. Methods: Two processing methods (physical mixing, PM and spray-drying, SD) were applied before compaction and the release from corresponding matrices was compared. The release from CP-SA PM matrices was also investigated using three model drugs (paracetamol, salicylic acid, and verapamil HCl) and two dissolution media (0.1 N HCl or phosphate buffer, pH?=?6.8), and the release rate, mechanism, and pH-dependence were characterized by fitting of Higuchi and Peppas models, and evaluation of similarity factor. Furthermore, swelling behavior of CP-SA matrix tablets was studied for evaluating its impact on drug release. Results: The processing method (SD or PM) markedly affected the drug release from CP-SA matrices. ANOVA tests showed significant effects of the CP:SA ratio and drug type on the release rate (expressed by the constant, KH, from Higuchi model) and of the dissolution medium on the release mechanism (expressed by the exponent, n, from Peppas model). Similarity factor (f2) indicated that the CP:SA ratios ≥?25:75 and ≥?50:50 were suitable for pH-independent release of paracetamol and salicylic acid, respectively, although for verapamil HCl, the matrix with low CP:SA ratio (0:100) showed remarkably reduced pH-dependence of release. Swelling parameters (water uptake and mass loss) were significantly changed with experimental variables (CP:SA ratio, medium, and time) and were in good correlation with drug release. Conclusion: Matrix tablets based on CP and SA form a potentially useful versatile system for pH-independent controlled drug release.  相似文献   

11.
Attempting to prepare a convenient bioavailable formulation of vitamin B12 (cyanocobalamin), 17 tablet formulations were prepared by direct compression. Different concentrations of hydroxypropyl methyl cellulose (HPMC), carbopol 971p (CP971p), and chitosan (Cs) were used. The tablets were characterized for thickness, weight, drug content, hardness, friability, surface pH, in vitro drug release, and mucoadhesion. Kinetic analysis of the release data was conducted. Vitamin B12 bioavailability from the optimized formulations was studied on rabbits by the aid of enzyme-linked immunosorbent assay. Neurotone® I.M. injection was used for comparison. HPMC (F1-F4), CP971p (F5-F8), and HPMC/CP971p (F12-F15)-based formulations showed acceptable mechanical properties. The formulated tablets showed maximum swelling indices of 232?±?0.13. The surface pH values ranged from 5.3?±?0.03 to 6.6?±?0.02. Bioadhesive force ranged from 66?±?0.6 to 150?±?0.5?mN. Results showed that CP971p-based tablets had superior in vitro drug release, mechanical, and mucoadhesive properties. In vitro release date of selected formulations were fitted well to Peppas model. HPMC/CP971p-based formulations showed bioavailability up to 2.7-folds that of Neurotone® I.M. injection.  相似文献   

12.
The purpose of this study was to apply the optimization method incorporating artificial neural network (ANN) using pH-independent release of weakly basic drug, carvedilol from HPMC-based matrix formulation. Because of weakly basic nature of carvedilol, drug shows pH-dependent solubility. The enteric polymer EUDRAGIT L100 was added formulations to overcome pH-dependent solubility of carvedilol. Effects of the Hydroxypropylmethyl cellulose (HPMC) K4M and EUDRAGIT L100 amount on drug release were investigated. For this purpose 13 kinds of formulations were prepared at three different levels of each variables. The optimization of the formulation was evaluated by using ANN method. Two formulation parameters, the amounts of HPMC K4M and Eudragit L100 at three levels (?1, 0, 1) were selected as independent/input variables. In-vitro dissolution sampling times at twelve different time points were selected as dependent/output variables. By using experimental dissolution results and amount of HPMC K4M and EUDRAGIT L100, percentage of dissolved carvedilol was predicted by ANN. Similarity factor (f2) between predicted and experimentally observed profile was calculated and f2 value was found 76.33. This value showed that there was no difference between predicted and experimentally observed drug release profile. As a result of these experiments, it was found that ANNs can be successfully used to optimize controlled release drug delivery systems.  相似文献   

13.
ABSTRACT

The main focus of this study is to develop colon targeted drug delivery systems for metronidazole (MTZ). Tablets were prepared using various polysaccharides or indigenously developed graft copolymer of methacrylic acid with guar gum (GG) as a carrier. Various polysaccharides such as GG, xanthan gum, pectin, carrageenan, β-cyclodextrin (CD) or methacrylic acid-g-guar (MAA-g-GG) gum have been selected and evaluated. The prepared tablets were tested in vitro for their suitability as colon-specific drug delivery systems. To further improve the colon specificity, some selected tablet formulations were enteric coated with Eudragit-L 100 to give protection in an acidic environment. Drug release studies were performed in simulated gastric fluid (SGF) for 2 hr followed by simulated intestinal fluid (SIF) at pH 7.4. The dissolution data demonstrate that the rate of drug release is dependent upon the nature and concentration of polysaccharide/polymer used in the formulations. Uncoated tablets containing xanthan gum or mixture of xanthan gum with graft copolymer showed 30–40% drug release during the initial 4–5 hr, whereas for tablets containing GG with the graft copolymer, it was 70%. After enteric coating, the release was drastically reduced to 18–24%. The other polysaccharides were unable to protect drug release under similar conditions. Preparations with xanthan gum as a matrix showed the time-dependent release behavior. Further, in vitro release was performed in the dissolution media with rat caecal contents. Results indicated an enhanced release when compared to formulations studied in dissolution media without rat caecal contents, because of microbial degradation or polymer solubilization. The nature of drug transport was found to be non-Fickian in case of uncoated formulations, whereas for the coated formulations, it was found to be super-Case-II. Statistical analyses of release data indicated that MTZ release is significantly affected by the nature of the polysaccharide used and enteric coating of the tablet. Differential scanning calorimetry indicated the presence of crystalline nature of drug in the formulations.  相似文献   

14.
Coenzyme Q10 (CoQ10) is an insoluble, poorly permeable antioxidant with great biological value which acts as anti-aging and anti-wrinkle agent. To improve its permeability through topical application, the current study aimed at formulating oil/water (o/w) nanoemulsion (NE) as an efficient vehicle for delivering (CoQ10) through the skin barriers. The solubility of (CoQ10) was tested for various oils, surfactants (S), and co-surfactants (CoS). The NE region was determined by constructing pseudoternary phase diagrams. NE formulae containing 1, 2, and 3% w/w drug have been subjected to thermodynamic stability test. The formulae that passed thermodynamic stability tests were characterized by physical properties as pH, viscosity, refractive index, droplet size, zeta-potential, TEM, electroconductivity, in vitro release, and ex vivo permeation. The formula ‘F2’ containing 10% w/w isopropyl myristate (oil phase), 60% w/w of Tween 80: Transcutol HP mixture (S/CoSmix) at ratio 2:1, 30% w/w water and 2% w/w drug was evaluated for its anti-wrinkle efficiency using an animal model. The ‘F2’ formula showed 11.76?±?1.1?nm droplet size, 1.4260?±?0.0016 refractive index, 0.228 PDI, ?14.7?±?1.23?mv zeta potential, 7.06?±?0.051?pH, 199.05?±?0.35?cp viscosity, and the highest percentage of drug release in the selected dissolution media. About 47.21% of the drug was released in phosphate buffer 7.4 containing 5% w/v Labrasol and 5% w/v isopropyl alcohol through 24?h. It also showed the highest drug flux (Jss?=?3.164?µg/cm2/h), enhancement ratio (Er?=?8.32), and permeability coefficient (Kp?=?22.14?×?10?4 cm2/h). CoQ10 NE reduced the skin wrinkles and gave the skin smooth appearance. Our investigation suggests the potential use of NE as a vehicle for enhancing solubility and permeability of CoQ10 and thus improving its anti-wrinkle efficiency.  相似文献   

15.

Recently, it has been reported that doped Ga ferrite has potential application value in spintronics devices. Therefore, experimental study of the magnetic properties and potential physical mechanisms is essential for the realization of related spin-tronics devices. In this work, the synthesis process, crystal structure, and physical properties of spinel compound CoGa2O4 have been investigated. The competition between antiferromagnetism (AFM) and ferromagnetism (FM) is considered to be the crucial elements for resulting in spin glass (SG) behavior due to magnetic frustration. The observed SG behavior is determined by the temperature dependence of magnetization M(T) curves under the ZFC (zero-field-cooled) and FCC (field-cooled) processes, where the intense irreversibility divergence is formed. Moreover, the corresponding fitting parameters (the freezing temperature T0?=?9.32 K, the flipping time τ0?=?4.49?×?10–10 s, and the dynamical exponent ?=?4.46) strongly indicate the existence of the SG behavior. Meanwhile, as another specific characteristic for SG, in our present work, frequency (f) and magnetic field (H) have a strong influence on the peaks of AC susceptibility. From where, with the increase of f and H, the freezing temperature follows a corresponding peak shift. All the above phenomena and relevant analyses of magnetic frustration behavior confirm the typical SG behavior in CoGa2O4 system.

  相似文献   

16.
Hydrophilic matrices are widely used for extended release drug delivery, with hypromellose (HPMC) being a popular rate-controlling carrier. The FDA has recently issued an alert regarding the potential negative influence of alcohol on extended release dosage forms.

The aim of this study was to investigate the hydroalcoholic solution effect on hydration, gel formation and drug release from HPMC matrices. None of the investigated matrix formulations (felodipine, gliclazide, and metformin hydrochloride) resulted in dose-dumping when exposed to ethanol solutions.

HPMC compacts made of three different viscosity grades of Methocel showed consistent swelling and gel formation when exposed to hydroalcoholic media.  相似文献   

17.
Tamsulosin hydrochloride (TSH) controlled-release capsule (pellets) was successfully prepared using a novel, simple, and flexible multiunit drug delivery system, which consisted of two different coated pellets. The TSH-loaded core pellets consisting of microcrystalline cellulose (MCC), lactose, Carbopol® 974P, and the active agent, were prepared by extrusion/spheronization method. Eudragit® NE30D and Eudragit® L30D-55 were used as the coating materials to prepare sustained-release (SR) pellets and enteric-release (ER) pellets. The coated pellets were prepared using two different equipments: centrifugal coater and fluidized-bed coater. By adjusting the ratio of SR and ER pellets, more than one blend ratios, which meet the in vitro release criterion were obtained. A similarity factor (f2) was employed to choose the optimum proportion compared with the commercial product (Harnal® capsule). The morphology of the pellet surfaces was examined by scanning electron microscopy (SEM) before and after dissolution. The release profiles were significantly affected by changing the proportions of SR and ER. The optimum ratio is SR:ER?=?2:1 using a centrifugal coater (f2?=?61.93) and SR:ER?=?3:1 using a fluidized coater (f2?=?66.42). This result suggests that blending these two-part pellets (SR and ER) can provide an alternative to preparing a controlled-release dosage form, instead of blending of the coating polymer.  相似文献   

18.
Context: Mini-tablets are compact dosage forms, typically 2–3 mm in diameter, which have potential advantages for paediatric drug delivery. Extended release (ER) oral dosage forms are intended to release drugs continuously at rates that are sufficiently controlled to provide periods of prolonged therapeutic action following each administration, and polymers such as hypromelllose (HPMC) are commonly used to produce ER hydrophilic matrices.

Objective: To develop ER mini-tablets of different sizes for paediatric delivery and to study the effects of HPMC concentration, tablet diameter and drug solubility on release rate.

Methods: The solubility of Hydrocortisone and theophylline was determined. Mini-tablets (2 and 3 mm) and tablets (4 and 7 mm) comprising theophylline or hydrocortisone and HPMC (METHOCEL? K15M) at different concentrations (30, 40, 50 and 60%w/w) were formulated. The effect of tablet size, HPMC concentration and drug solubility on release rate and tensile strength was studied.

Results and Discussion: Increasing the HPMC content and tablet diameter resulted in a significant decrease in drug release rate from ER mini-tablets. In addition, tablets and mini-tablets containing theophylline produced faster drug dissolution than those containing hydrocortisone, illustrating the influence of drug solubility on release from ER matrices. The results indicate that different drug release profiles and doses can be obtained by varying the polymer content and mini-tablet diameter, thus allowing dose flexibility to suit paediatric requirements.

Conclusion: This work has demonstrated the feasibility of producing ER mini-tablets to sustain drug release rate, thus allowing dose flexibility for paediatric patients. Drug release rate may be tailored by altering the mini-tablet size or the level of HPMC, without compromising tablet strength.  相似文献   

19.
The aim of this study was to produce cinnarizine loaded Eudragit® L100-55 microparticles by coacervation technique in order to achieve pH responsive drug release using hydroxypropyl methycellulose (HPMC) as stabilizer. The effect of enteric polymer: HPMC ratio on properties of microparticles was investigated with regard to particle size distribution, morphology, yield, encapsulation efficiency, in vitro drug release profiles and interaction between cinnarizine and Eudragit® L100-55. High drug encapsulation efficiency was seen in all microparticles. Particle diameter increased when the enteric polymer content was higher relative to HPMC. In vitro dissolution studies demonstrated that the drug release from the microparticles was dependent upon enteric polymer: HPMC ratio and particle size distribution. At the ratio of at least 3.75:1 of enteric polymer: HPMC, drug release was suppressed most significantly in low pH (hydrochloric acid as medium) while rapid drug release was observed in pH 7.4.  相似文献   

20.
Objective: The aim of the present investigation was to evaluate the use of spray-dried O-carboxymethyl chitosan (OCMCS) as potential hydrophilic matrix excipient for sustained release of drug.

Methods: The polymer was synthesized from chitosan, then spray-dried and characterized. Tablets with different OCMCS concentrations (80, 50, 30, 5 and 2% w/w), containing diltiazem (DTZ) as model drug, were prepared for direct compression (DC) and after the wet granulation method (WG).

Results: The spray-dried OCMCS powder was spherical, with a smooth surface and an average size of 2.2?µm. The tablets prepared for WG disintegrated in time less than 30?min. The tablets obtained for DC presented high retention of the drug, with zero order or Higuchi release kinetic. There was a direct relationship between the OCMCS concentration and the release ratio, swelling degree and water uptake behavior. DC tablets containing 80% OCMCS presented behavior as an effective swelling-control system. The DC tablets with 5% OCMCS showed a similar release profile at formulations with 30% HPMC.

Conclusion: Spray-dried OCMCS showed great potential as hydrophilic matrices for drug-sustained release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号