首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The truncated fractional Fourier transform (FRT) is applied to a partially coherent Gaussian Schell-model (GSM) beam. The analytical propagation formula for a partially coherent GSM beam propagating through a truncated FRT optical system is derived by using a tensor method. Furthermore, we report the experimental observation of the truncated FRT for a partially coherent GSM beam. The experimental results are consistent with the theoretical results. Our results show that initial source coherence, fractional order, and aperture width (i.e., truncation parameter) have strong influences on the intensity and coherence properties of the partially coherent beam in the FRT plane. When the aperture width is large, both the intensity and the spectral degree of coherence in the FRT plane are of Gaussian distribution. As the aperture width decreases, the diffraction pattern gradually appears in the FRT plane, and the spectral degree of coherence becomes of non-Gaussian distribution. As the coherence of the initial GSM beam decreases, the diffraction pattern for the case of small aperture widths gradually disappears.  相似文献   

2.
Pu J  Nemoto S  Liu X 《Applied optics》2004,43(28):5281-5286
We demonstrate that when a partially coherent beam with a Gaussian intensity distribution is focused by a lens, the desired partially coherent flat-topped intensity distribution or doughnut-shaped intensity distribution at the geometrical focus can be generated by choice of appropriate form of spectral degree of coherence. We provide a novel approach to beam shaping of a partially coherent beam and offer new schemes for their potential applications such as material processing, optical therapy, and optical tweezers.  相似文献   

3.
The fractional Fourier transform (FRT) is applied to a partially coherent off-axis Gaussian Schell-model (GSM) beam, and an analytical formula is derived for the FRT of a partially coherent off-axis GSM beam. The corresponding tensor ABCD law for performing the FRT of a partially coherent off-axis GSM beam is also obtained. As an application example, the FRT of a partially coherent linear laser array that is expanded as a sum of off-axis GSM beams is studied. The derived formulas are used to provide numerical examples. The formulas provide a convenient way to analyze and calculate the FRT of a partially coherent off-axis GSM beam.  相似文献   

4.
Evolution properties of the complex degree of coherence of a partially coherent Laguerre–Gaussian beam (LGB) on propagation in free space and turbulent atmosphere are studied comparatively with the help of the general propagation formula for such beam. It is found that the behavior of the complex degree of coherence of a partially coherent LGB on propagation in turbulent atmosphere is much different from that in free space and is closely related to the initial beam parameters and the structure constant of the turbulent atmosphere. The distribution of the modulus of the complex degree of coherence of the partially coherent LGB finally becomes of Gaussian distribution at long propagation distance in turbulent atmosphere, and it becomes of Gaussian distribution more slowly with the increase of the mode orders, beam width and wavelength. Our results will be useful in long-distance free-space optical communications.  相似文献   

5.
Abstract

We explore the focusing properties of a partially coherent Laguerre–Gaussian (LG) beam of all orders, particularly the focal shift (i.e. the shift of the actual focal plane away from the geometrical focal plane). We derive the analytical expressions for the average intensity and the effective beam width of a focused partially coherent LG beam, and we adopt the minimum effective beam width instead of the conventional maximum on-axis intensity to determine the actual focal plane. It is found that the focused beam shape, minimum effective beam width and the focal shift of a focused partially coherent LG beam are determined by its initial coherence width, radial mode order and azimuthal mode order (i.e. topological charge) together. Our results may be useful for optical trapping and micro-fabrication, where precise focal position and prescribed beam shape are required.  相似文献   

6.
On the basis of the extended Huygens-Fresnel principle, the scattering of partially coherent Gaussian-Schell-model (GSM) beams from a diffuse target in slant double-passage atmospheric turbulence is studied and compared with that of fully coherent Gaussian beams. Using the cross-spectral density function of the GSM beams, we derive the expressions of the mutual coherence function, angle-of-arrival fluctuation, and covariance and variance of the intensity of the scattered field, taking into account the fluctuations of both the log-amplitude and phase. The numerical results are presented, and the influences of the wavelength, propagation distance, and waist radius on scattering properties are discussed. The perturbation region of the normalized intensity variance of the partially coherent GSM beam is smaller than that of the fully coherent Gaussian beam at the middle turbulence level. The normalized intensity variance of long-distance beam propagation is smaller than that of beam propagation along a short distance.  相似文献   

7.
Based on the generalized Huygens–Fresnel integral, analytical expressions for the mutual coherence function, the spatial complex degree of coherence, and the effective size of a partially coherent higher-order cosh-Gaussian beam through a paraxial ABCD optical system have been derived. As a numerical example, the propagation of a partially coherent higher-order cosh-Gaussian beam through an optical Fourier-transforming system with a limiting aperture is illustrated. The normalized intensity distribution, the spatial complex degree of coherence, and the effective beam size for the partially coherent higher-order cosh-Gaussian beam are numerically demonstrated in the observation plane. The influences of the spatial coherence length and the limiting aperture on the normalized intensity distribution, the spatial complex degree of coherence, and the effective beam size are also examined in detail.  相似文献   

8.
Atmospheric optical communication with a Gaussian Schell beam   总被引:7,自引:0,他引:7  
We consider a wireless optical communication link in which the laser source is a Gaussian Schell beam. The effects of atmospheric turbulence strength and degree of source spatial coherence on aperture averaging and average bit error rate are examined. To accomplish this, we have derived analytic expressions for the spatial covariance of irradiance fluctuations and log-intensity variance for a Gaussian beam of any degree of coherence in the weak fluctuation regime. When spatial coherence of the transmitted source beam is reduced, intensity fluctuations (scintillations) decrease, leading to a significant reduction in the bit error rate of the optical communication link. We have also identified an enhanced aperture-averaging effect that occurs in tightly focused coherent Gaussian beams and in collimated and slightly divergent partially coherent beams. The expressions derived provide a useful design tool for selecting the optimal transmitter beam size, receiver aperture size, beam spatial coherence, transmitter focusing, etc., for the anticipated atmospheric channel conditions.  相似文献   

9.
Theoretical study of propagation behaviour of partially coherent divergent Gaussian beams through oceanic turbulence has been performed. Based on the previously developed knowledge of propagation of a partially coherent beam in atmosphere, the spatial power spectrum of the refractive index of ocean water, extended Huygens–Fresnel principle and the unified theory of coherence and polarization, analytical formulas for cross-spectral density matrix elements are derived. The analytical formulas for intensity distribution, beam width and spectral degree of coherence are determined by using cross-spectral density matrix elements. Then, the effects of some source factors and turbulent ocean parameters on statistical properties of divergent Gaussian beam propagating through turbulent water are analysed. It is found that beam’s statistical propagation behaviour is affected by both environmental and source parameters variations.  相似文献   

10.
An analytical and concise formula is derived for the fractional Fourier transform (FRT) of partially coherent beams that is based on the tensorial propagation formula of the cross-spectral density of partially coherent twisted anisotropic Gaussian-Schell-model (GSM) beams. The corresponding tensor ABCD law performing the FRT is obtained. The connections between the FRT formula and the generalized diffraction integral formulas for partially coherent beams passing through aligned optical systems and misaligned optical systems are discussed. With use of the derived formula, the transformation and spectrum properties of partially coherent GSM beams in the FRT plane are studied in detail. The results show that the fractional order of the FRT has strong effects on the transformation properties and the spectrum properties of partially coherent GSM beams. Our method provides a simple and convenient way to study the FRT of twisted anisotropic GSM beams.  相似文献   

11.
A method of studying the M2-factor of truncated partially coherent beams both in free space and in turbulence is proposed, i.e., the method of the window function being expanded into a finite sum of complex-valued Gaussian functions. Taking the Gaussian Schell-model (GSM) beam as a typical example of partially coherent beams, the analytical formula of the M2-factor of truncated GSM beams propagating through atmospheric turbulence is derived. It is shown that the M2-factor decreases as the truncation parameter δ and the coherence parameter α increase. However, the M2-factor in turbulence is more sensitive to δ than that in free space. On the other hand, the M2-factor of truncated partially coherent beams with smaller δ is more affected by turbulence. In addition, the effect of turbulence on the M2-factor of truncated GSM beams is less sensitive to the coherence parameter α than that of nontruncated GSM beams.  相似文献   

12.
The effects of turbulence on the beam quality of apertured partially coherent beams have been studied both analytically and numerically. Taking the Gaussian Schell-model (GSM) beam as a typical example of partially coherent beams, closed-form expressions for the average intensity, mean-squared beam width, power in the bucket, beta parameter, and Strehl ratio of apertured partially coherent beams propagating through atmospheric turbulence are derived. It is shown that the smaller the beam truncation parameter is, the less affected by turbulence the apertured partially coherent beams are. Furthermore, the apertured partially coherent beams are less sensitive to the effects of turbulence than unapertured ones. The main results are interpreted physically.  相似文献   

13.
According to the extended Huygens–Fresnel integral, the expressions for the on-axis spectrum of partially coherent Gaussian Schell-model (GSM) rectangular array beams passing through ABCD optical systems have been derived. The generalized Fresnel number of the system, the spatial coherent parameter of array beamlets and the array beam parameters including the number of beamlets and the separation distance between beamlets have been taken as the characteristic parameters to compare the spectral shifts of GSM array beams for the two types of the superposition, i.e. the correlated superposition and the uncorrelated superposition. In particular, the effect of characteristic parameters on the on-axis relative spectral shifts has been discussed in detail. The results show that the spectral intensity of GSM array beams for the two types of the superposition passing through ABCD systems depends on the source spectral density S 0(ω), the spatial coherent parameter of array beamlets β, the generalized Fresnel number of the system F and the array beam parameters. Furthermore, for the uncorrelated superposition, the spectrum of GSM array beams only exhibit the blue-shift, whereas for the correlated superposition, GSM array beams exhibit the spectral switch and the number of spectral switches increases with the increase of array beam parameters in the near field due to the interference between beamlets. In particular, the effect of the array beam parameters on the on-axis relative spectral shift is more obvious.  相似文献   

14.
Spectral changes of a partially coherent standard or elegant Laguerre–Gaussian (LG) beam propagating in turbulent atmosphere were studied numerically. Our results show that the spectral changes of a partially coherent standard or elegant LG beam in turbulent atmosphere are determined by both the structure constant of the turbulent atmosphere and the initial beam parameters. Furthermore, it is found that a partially coherent elegant LG beam is less affected by the turbulent atmosphere than a partially coherent standard LG beam from the aspect of the on-axis spectral shift, and this advantage is enhanced for small structure constant, small beam waist size, large mode orders, and large transverse coherence length. Our results will be useful in long-distance free-space optical communications.  相似文献   

15.
We introduce the coincidence fractional Fourier transform (FRT) implemented with incoherent and partially coherent light radiation. Optical systems for implementing the coincidence FRT are designed. The results show that the visibility and quality of the coincidence FRT of an object are closely related to the light source's transverse size, coherence, and spectral width. As an example, we numerically study the coincidence FRT of a single slit.  相似文献   

16.
The focusing properties of coherent and partially coherent dark hollow beams (DHBs) through a paraxial ABCD optical system are theoretically investigated. It is found that the evolution behavior of the intensity distribution of focused partially coherent DHBs is closely related to their spatial coherence. The radiation forces (RFs) of focused coherent and partially coherent DHBs acting on a Rayleigh dielectric particle are also theoretically investigated. Numerical results show that the coherent and partially coherent DHBs can be focused into a tight focal spot, which can be used to stably trap a Rayleigh dielectric particle with high refractive index at the focus point. The influences of different beam parameters, including the spatial coherence, beam waist width, beam order, and hollow parameter of partially coherent DHBs, on the RFs and the trap stiffness are analyzed in detail. Finally, the stability conditions for effective trapping particles are also discussed.  相似文献   

17.
With the use of the general beam formulation, the modulus of the complex degree of coherence for partially coherent cosh-Gaussian, cos-Gaussian, Gaussian, annular and higher-order Gaussian optical beams is evaluated in atmospheric turbulence. For different propagation lengths in horizontal atmospheric links, the moduli of the complex degree of coherence at the source and receiver planes are examined when reference points are taken on the receiver axis and off-axis. In the on-axis case, it is observed that in propagation, the moduli of the complex degree of coherence are symmetrical and look like the intensity profile of the related coherent beam propagating in a turbulent atmosphere. For all the beams considered, the moduli of the complex degree of coherence profiles turn into Gaussian shapes beyond certain propagation lengths. In the off-axis case, the moduli of complex degree of coherence patterns become drifted at the earlier propagation lengths. Among the beams investigated, the cos-Gaussian beam is found to be almost independent of the changes in the source partial coherence parameter, and the annular beam seems to be affected the most against the variations of the source partial coherence parameter.  相似文献   

18.
The analytical expression for the spectral degree of coherence of partially coherent flat-topped beams propagating through the turbulent atmosphere is derived, and the spatial correlation properties are studied in detail. In particular, we find that the oscillatory behavior and phase singularities of the spectral degree of coherence may appear when partially coherent flat-topped beams propagate through the turbulent atmosphere; this behavior is very different from the behavior of Gaussian Schell-model beams. But the oscillatory behavior becomes weaker with increasing turbulence and even disappears when the turbulence is strong enough. The width of the spectral degree of coherence is always smaller than that of the spectral density in the far field when the turbulence is strong enough, whereas the width of the spectral degree of coherence in free space can be either larger or smaller than that of the spectral density in the far field.  相似文献   

19.
Abstract

Based on the characteristics of the laser device and the inevitable error of the processing technique, a laser beam emitted from a communication terminal can be represented by the Gaussian Schell model (GSM). In space-to-ground link laser communications, the optical intensity is affected by the source coherence parameter and the zenith angle. With full consideration of these two parameters, the statistical distribution model of the optical intensity with a GSM laser in both downlink and uplink is derived. The simulation results indicate that increasing the source coherence parameter has an effect on the statistical distribution of the optical intensity; this effect is highly similar to the effect of a larger zenith angle. The optical intensity invariably degrades with increasing source coherence parameter or zenith angle. The results of this work can promote the improvement of the redundancy design of a laser communication receiver system.  相似文献   

20.
Abstract

The generation of a partially coherent laser beam directly from a spatial-temporal phase modulated optical resonator is investigated both experimentally and theoretically. The laser material used in the experiment is Nd:YAG rod pumped by Krypton lamps working in continuous wave mode. The phase modulation is fulfilled by an intra-cavity LiNbO3 electro-optic crystal driven by high voltage. The experimental results show that intracavity phase modulation is an effective way to generate partially coherent laser beams. The theoretical analysis and numerical simulation shows that the output beam can be characterized by Gaussian Schell-model (GSM) beams. The two-slit interference experiment confirms that the output beam is partially coherent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号