首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Resolution of individual molecular species of human platelet 1,2-diradyl-sn-glycero-3-phosphocholines and 1,2-diradyl-sn-glycero-3-phosphoethanolamines by reverse phase high pressure liquid chromatography (HPLC) allowed a thorough analysis of those phospholipids labeled with [3H]arachidonic acid. Approximately 54% and 16% of the total incorporated radiolabel was found in choline glycerophospholipids and ethanolamine glycerophospholipids, respectively, with ca. 90% of this being found in the 1,2-diacyl molecular species. Eighty percent of [3H]-arachidonic acid incorporated into 1-acyl-2-arachidonoyl-sn-glycero-3-phosphocholine in resting platelets was equally distributed between 1-palmitoyl-2-arachidonoyl and 2-stearoyl-2-arachidonoyl-sn-glycero-3-phosphocholine, while 70% of the radiolabel in 1-acyl-2-arachidonoyl-sn-glycero-3-phosphoethanolamine was found in 1-stearoyl-2-arachidonoyl-sn-glycero-3-phosphoethanolamine. Thrombin stimulation (5 U/ml for 5 min) resulted in deacylation of all 1-acyl-2-[3H]arachidonoyl molecular species of 1-acyl-2-arachidonoyl-sn-glycero-3-phosphocholine and 1-acyl-2-arachidonoyl-sn-glycero-3-ethanolamine. There was also a slight increase in 1-O-alkyl-2-[3H]arachidonoyl-sn-glycero-3-phosphocholine and a significant increase in 1-O-alk-1′-enyl-2-[3H]arachidonoyl-sn-glycero-3-phosphoethanolamine molecular species of over 300%. Thus, HPLC methodology indicates that arachidonoyl-containing molecular species of phosphatidylcholine and phosphatidylethanolamine are the major source of arachidonic acid in thrombin-stimulated human platelets, while certain ether phospholipid molecular species become enriched in arachidonate.  相似文献   

2.
Wang XH  Ushio H  Ohshima T 《Lipids》2003,38(1):65-72
The differences in distribution of geometric isomers of unsaturated PC hydroperoxides generated by free radical oxidation were compared, as corresponding hydroxy analogs, in heterogeneous liposomes and in a homogeneous methanol solution by using HPLC with UV detection due to the presence of conjugated dienes. Identification of fractionated peak components was carried out by GC-MS. When the oxidation of 1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphocholine, PC(16∶0/18∶2), was initiated in liposomes by a hydrophilic azo radical initiator, and in a methanol solution by a hydrophobic azo radical initiator, there was no significant difference in the relative percentages of 1-palmitoyl-2-(9-hydroxy-trans-10,trans-12-octadecadienoyl)-sn-glycero-3-phosphocholine (9-t,t-OH PC) and 1-palmitoyl-2-(13-hydroxy-trans-9,trans-11-octadecadienoyl)-sn-glycero-3-phosphocholine (13-t,t-OH PC) between the PC oxidized in liposomes and in the methanol solution. For the oxidation of 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine, PC(16∶0/20∶4), the relative percentage of 1-palmitoyl-2-(5-hydroxy-trans-6,cis-8,11,14-eicosatetraenoyl)-sn-glycero-3-phosphocholine (5-OH PC) was significantly higher (P<0.01) than that of 1-palmitoyl-2-(15-hydroxy-cis-5,8,11,trans-13-eicosatetraenoyl)-sn-glycero-3-phosphocholine (15-OH PC) in liposomes. For the homogeneous methanol solution of PC(16∶0/20∶4), the relative percentage of 5-OH PC was close to that of 15-OH PC. For the PC(16∶0/20∶4) oxidized in bulk with added pentamethylchromanol, the individual amount of 15-OH PC, 1-palmitoyl-2-(11-hydroxy-cis-5,8trans-12,cis-14-eicosatetraenoyl)-sn-glycero-3-phosphocholine (11-OH PC), 1-palmitoyl-2-(12-hydroxy-cis-5,8,trans-10,cis-14-eicosatetraenoyl)-sn-glycero-3-phosphocholine (12-OH PC), 1-palmitoyl-2-(8-hydroxy-cis-5,trans-9,cis-11,14-eicosatetraenoyl)-sn-glycero-3-phosphocholine (8-OH PC), 1-palmitoyl-2-(9-hydroxy-cis-5,trans-7,cis-11,14-eicosatetraenoyl)-sn-glycero-3-phosphocholine (9-OH PC), and 5-OH PC were close to each other compared to the corresponding values in liposomes and in methanol solution. The results obtained by gel permeation chromatography of the PC liposomes containing hydrophilic 2,2′-azobis-2-amidinopropane) dihydrochloride (AAPH) suggest that the AAPH added to the liposomes of PC(16∶0/20∶4) was partitioned into the water phase and out of the hydrophobic region of the fatty acyl moieties of the PC. These results confirm that the distance that exists in the bis-allylic carbons of the unsaturated fatty acyl moieties of PC from the interface between the hydrophilic region of PC and the water phases played an important role in influencing hydrogen abstraction to form a symmetrical distribution of hydroperoxide isomers in both the heterogeneous liposomes and the homogeneous methanol solution.  相似文献   

3.
The importance of the steric configuration of lysophosphatidylcholine in the lymphatic transport of fat was investigated in bile fistula rats. It was found that the feeding of 1-palmitoyl-sn-glycero-3-phosphocholine increased the lymphatic output of phosphatidyl choline and triacylglycerol, while the feeding of 3-palmitoyl-sn-glycero-1-phosphocholine had no effect. In intestinal microsomes of the bile fistula rats, it was found that the lysophosphatidylcholine acyltransferase was stereospecific in acylating the 1-acyl-sn-glycero-3-phosphocholine enantiomer. The significance of these findings is briefly discussed.  相似文献   

4.
In mammalian systems, platelet-activating factor, 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine, (PAF) is rapidly inactivated by a deacetylation/reacylation system that produces 1-O-alkyl-2-acyl-sn-glycero-3-phosphocholine which is highly enriched in arachidonic acid. There is some evidence that n−3 fatty acids may have an impact on this system in humans but the nature of this impact is unclear. In rainbow trout, n−3 fatty acids are known to be essential dietary components which are derived through the food chain. Substantial quantities of n−3 fatty acids are found in trout membrane phospholipids. We show here that in sharp contrast to mammalian cells, trout cells acylate lyso platelet-activating factor, alkyl-GPC, 1-O-alkyl-2-lyso-sn-glycero-3-phosphocholine, (lyso-PAF) with a high degree of specificity for n−3 fatty acids. When [3H]lysoPAF was incubated with these cells, only three molecular species of alkylacylglycerophosphocholine were produced, and 92% contained n−3 fatty acids. Since isolated membranes yielded similar results, it appears that the acylation proceedsvia a coenzyme A-independent transacylase as found in mammalian systems.  相似文献   

5.
Jen-sie Tou 《Lipids》1987,22(5):333-337
The present study showed that platelet-activating factor (1-O-hexadecyl-2-acetyl-sn-glycero-3-phosphocholine, PAF), but not lysoPAF (1-O-hexadecyl-sn-glycero-3-phosphocholine) rapidly (within 15 sec) stimulated the incorporation of both [1-14C]arachidonate and [1-14C]docosahexaenoate into phosphatidylinositol (PI) and phosphatidylcholine (PC) in human neutrophils. Concomitantly, it inhibited the formation of labeled phosphatidic acid from both fatty acids. The magnitude of stimulation (percentage of control) was greater in PI than in PC for the incorporation of arachidonate and vice versa for the incorporation of docosahexaenoate. It reached a maximum at 10−7 M and started to decline at 10−6 M. Extracellular Ca2+ was not essential for the action of PAF on phospholipid acylation. The distribution of labeled arachidonate in the molecular species of PC was not altered by PAF after 1 min incubation, suggesting that the increased formation of arachidonyl-PC during the early stage of neutrophil-PAF interaction was not originated from the added PAF. No measurable changes in the mass of each phospholipid were detected in neutrophils challenged by PAF from 15 sec to 2 min. The data suggest that the increased incorporated of extracellular fatty acids into PI and PC elicited by PAF may be secondary to increased deacylation of these phospholipids, and the magnitude of stimulation reflects the specificity of acyltransferase catalyzing the acylation of lysoPI and lysoPC by fatty acyl-CoA.  相似文献   

6.
Since its introduction as an ionization technique in mass spectrometry, matrix-assisted laser desorption ionization (MALDI) has been applied to a wide range of applications. Quantitative small molecule analysis by MALDI, however, is limited due to the presence of intense signals from the matrix coupled with non-homogeneous surfaces. The surface used in nano-structured laser desorption ionization (NALDI) eliminates the need for a matrix and the resulting interferences, and allows for quantitative analysis of small molecules. This study was designed to analyze and quantitate phospholipid components of liposomes. Here we have developed an assay to quantitate the DPPC and DC8,9PC in liposomes by NALDI following various treatments. To test our method we chose to analyze a liposome system composed of DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) and DC8,9PC (1,2-bis(tricosa-10,12-diynoyl)-sn-glycero-3-phosphocholine), as DC8,9PC is known to undergo cross-linking upon treatment with UV (254 nm) and this reaction converts the monomer into a polymer. First, calibration curves for pure lipids (DPPC and DC8,9PC) were created using DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine) as an internal standard. The calibration curve for both DPPC and DC8,9PC showed an R2 of 0.992, obtained using the intensity ratio of analyte and internal standard. Next, DPPC:DC8,9PC liposomes were treated with UV radiation (254 nm). Following this treatment, lipids were extracted from the liposomes and analyzed. The analysis of the lipids before and after UV exposure confirmed a decrease in the signal of DC8,9PC of about 90%. In contrast, there was no reduction in DPPC signal.  相似文献   

7.
1-0-Hexadecyl-2-0-acetyl-sn-glycero-3-phosphocholine (platelet-activating factor) at 10−10-10−9 M induced slow contraction of isolated guinea-pig ilcal muscles and the contraction persisted for a long time. At a higher concentration of 10−7 M, this phospholipid induced more rapid, but not greater, contraction. At higher concentrations (10−6-10−5 M), this phospholipid induced a biphasic response: rapid contraction followed by relaxation. At high concentrations, this compound inhibited acetylcholine-induced contractions. The stimulatory effect of this phospholipid was ca. 300 times that of 1-palmitoyl-2-0-acetyl-sn-glycero-3-phosphocholine, while its inhibitory potency on induced contraction was similar to those of 1-palmitoyl-2-0-acetyl-sn-glycero-3-phosphocholine and its lyso derivative. It was suggested that the differences in effects on contraction of different concentrations of 1-0-hexadecyl- and 1-palmitoyl-2-0-acetyl-sn-glycero-3-phosphocholine were due to the dual effects of these compounds on the ileum: a strong stimulatory effect and a moderate inhibitory effect on contraction.  相似文献   

8.
Jen-sie Tou  Sean Healey 《Lipids》1991,26(4):327-330
The present study was undertaken to test the hypothesis that leukotriene B4 (LTB4) may promote extracellular fatty acid incorporation into neutrophil choline glycerophospholipids (PC) to replenish phospholipids after deacylation. Incubation of human neutrophils with LTB4 (1.5 to 150 nM) for 1 for 5 min resulted in increased fatty acid incorporation into phosphatidylinositol (PI), diacyl-sn-glycero-3-phosphocholine (diacyl-GPC) and alkylacyl-GPC. The magnitude of stimulation (percentage of control) of fatty acid incorporation appears to reflect increased activity of the acyltransferases catalyzing acylation of the respective lysophospholipids. LTB4 stimulation of arachidonic acid incorporation into PI was greater than into PC, whereas the stimulation of palmitic acid but not by arachidonic acid. LTB4 and 1-O-alkyl-2-N-methylcarbamyl-sn-glycero-3-phosphocholine (cPAF) exhibited a similar stimulatory effect on fatty acid incorporation into the PC fraction. Phosphate analysis could not detect changes in the mass of PI or of PC in neutrophils exposed to LTB4 or cPAF. The results suggest that increased fatty acid incorporation into phospholipids in LTB4-activated neutrophils reflects activation of phospholipase A2 and acyltransferases as well as ofde novo phospholipid synthesis.  相似文献   

9.
The product of the ozonolysis of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine in ethanol-containing solvent was analyzed by chemiluminescence detection-HPLC with on-line electrospray MS, and characterized on the basis of NMR spectroscopy and MS in high-resolution fast atom bombardment mode. The reaction yielded a large amount of a novel ethoxyhydroperoxide compound [1-palmitoyl-2-(9-ethoxy-9-hydroperoxynonanoyl)-sn-glycero-3-phosphocholine]. In addition to a structural analysis, we speculate on the reaction pathway and discuss the possibility of ethoxyhydroperoxide as a potentially reactive ozonized lipid in food and biological materials.  相似文献   

10.
This study was undertaken to determine if rabbit neutrophils contain sufficient ether-linked precursor for the synthesis of 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine (platelet activatin factor) by a deacylation-reacylation pathway. The phospholipids from rabbit peritoneal polymorphonuclear neutrophils were purified and quantitated, and the choline-containing and ethanolamine-containing phosphoglycerides were analyzed for ether lipid content. Choline-containing phosphoglycerides (37%), ethanolamine-containing phosphoglycerides (30%), and sphingomyelin (28%) were the predominant phospholipid classes, with smaller amounts of phosphatidylserine (5%) and phosphatidylinositol (<1%). The choline-linked fraction contained high amounts of 1-O-alkyl-2-acyl-(46%) and 1,2-diacyl-sn-glycero-3-phosphocholine (54%), with a trace of the 1-O-alk-1′-enyl-2-acyl species. The ethanolamine-linked fraction contained high amounts of 1-O-alk-1′-enyl-2-acyl-(63%) and 1,2-diacyl-sn-glycero-3-phosphoethanolamine (34%), and a low quantity of the 1-O-alkyl-2-acyl species (3%). The predominant 1-O-alkyl ether chains found in thesn-1 position of the choline-linked fraction were 16∶0 (35%), 18∶0 (14%), 18∶1 (26%), 20∶0 (16%), and 22∶0 (9%). The major 1-O-alk-1′-enyl ether chains found in thesn-1 position of the ethanolamine-linked fraction were 14∶0 (13%), 16∶0 (44%), 18∶0 (27%), 18∶1 (12%) and 18∶2 (3%). The major acyl groups in thesn-1 position of 1,2-diacyl-sn-glycero-3-phosphocholine and 1,2-diacyl-sn-glycero-3-phosphoethanolamine were 16∶0, 18∶0 and 18∶1. The most abundant acyl group in thesn-2 position of all classes of choline- and ethanolamine-linked phosphoglycerides was 18⩺2. Although this work does not define the biosynthetic pathway for platelet activating factor, it does show that there is ample precursor present to support its synthesis by a deacylation-reacylation pathway.  相似文献   

11.
We have examined the biosynthetic pathway of triacylglycerols containing ricinoleate to determine the steps in the pathway that lead to the high levels of ricinoleate incorporation in castor oil. The biosynthetic pathway was studied by analysis of products resulting from castor microsomal incubation of 1-palmitoyl-2-[14C]oleoyl-sn-glycero-3-phosphocholine, the substrate of oleoyl-12-hydroxylase, using high-performance liquid chromatography, gas chromatography, mass spectrometry, and/or thin-layer chromatography. In addition to formation of the immediate and major metabolite, 1-palmitoyl-2-[14C]rici-noleoyl-sn-glycero-3-phosphocholine, 14C-labeled 2-linoleoyl-phosphatidylcholine (PC), and 14C-labeled phosphatidylethanolamine were also identified as the metabolites. In addition, the four triacylglycerols that constitute castor oil, triricinolein, 1,2-diricinoleoyl-3-oleoyl-sn-glycerol, 1,2-diricinoleoyl-3-linoleoyl-sn-glycerol, 1,2-diricinoleoyl-3-linolenoyl-sn-glycerol, were also identified as labeled metabolites in the incubation along with labeled fatty acids: ricinoleate, oleate, and linoleate. The conversion of PC to free fatty acids by phospholipase A2 strongly favored ricinoleate among the fatty acids on the sn-2 position of PC. A major metabolite, 1-palmitoyl-2-oleoyl-sn-glycerol, was identified as the phospholipase C hydrolyte of the substrate; however, its conversion to triacylglycerols was blocked. In the separate incubations of 2-[14C]ricinoleoyl-PC and [14C]ricinoleate plus CoA, the metabolites were free ricinoleate and the same triacylglycerols that result from incubation with 2-oleoyl-PC. Our results demonstrate the proposed pathway: 2-oleoyl-PC. Out results demonstrate the proposed pathway: 2-oleoyl-PC→2-ricinoleoyl-PC→ricinoleate →triacylglycerols. The first two steps as well as the step of diacylglycerol acyltransferase show preference for producing ricinoleate and incorporating it in triacylglycerols over oleate and linoleate. Thus, the productions of these triacylglycerols in this relatively short incubation (30 min), as well as the availability of 2-oleoyl-PC in vivo, reflect the in vivo drive to produce triricinolein in castor bean.  相似文献   

12.
Fuchs B  Müller K  Göritz F  Blottner S  Schiller J 《Lipids》2007,42(11):991-998
Plasmalogens (1-O-alk-1′-enyl-2-acyl-sn-glycero-3-phosphocholines and -phosphoethanolamines) are important constituents of spermatozoa membranes and possess significant antioxidative properties. This particularly holds as plasmalogens from spermatozoa also possess a very high content of highly unsaturated fatty acyl residues (especially 22:6). The organic spermatozoa extracts of two different ruminants (cattle and roe deer) were analyzed for their contents of characteristic choline plasmalogen oxidation products by matrix-assisted laser desorption and ionization time-of-flight (MALDI-TOF) mass spectrometry. It will be shown that 1-hydroxy-2-docosahexaenoyl-sn-glycero-3-phosphocholine (LPC 22:6) and formyl-LPC 22:6 are reliable measures of lipid oxidation of spermatozoa and allow, accordingly, conclusions about the storage conditions. All data on spermatozoa were also confirmed by the investigation of the oxidation behavior of selected reference compounds. It will be shown that, equally if plasmalogens or diacyl PC species are used, oxidation takes place primarily at the double bond next to the glycerol backbone. These data were additionally confirmed by recording the corresponding post source decay (PSD) fragment ion spectra.  相似文献   

13.
In this study, the 1-O-alkyl-2-acyl-sn-glycero-3-phosphocholine content of human platelets was determined. The distribution of arachidonate among the 1,2-diacyl, 1-O-alkyl-2-acyl, and 1-O-alk-l′-enyl-2-acyl classes of choline- and ethanolamine-containing phosphoglycerides was also assessed. The major platelet phospholipids were choline-containing phosphoglycerides (38%), ethanolamine-containing phosphoglycerides (25%) and sphingomyelin (18%), with smaller amounts of phosphatidylserine (11%) and phosphatidylinositol (4%). In addition to the diacyl class, the choline-linked fraction was found to contain both 1-O-alkyl-2-acyl (10%) and 1-O-alk-l′-enyl-2-acyl (9%) species. The ethanolamine-linked fraction, on the other hand, had an elevated level of the 1-O-alk-l′-enyl-2-acyl (60%) species and a small amount of the 1-O-alkyl-2-acyl component (4%). The major fatty acyl residues found in all classes of the choline and ethanolamine phospholipids were 16∶0, 18∶0, (Δ9), 18∶2(n−6) and 20∶4(n−6). The 1-O-alk-l and 1-O-alk-l′-enyl fraction of the ethanolamine-linked phospholipids also contained substantial amounts of 22∶4(n−6), 22∶5(n−3) and 22∶6(n−3) acyl chains. Arachidonate comprised 44% of the acyl residues in thesn-2 position of 1-O-alkyl-2-acyl-sn-glycero-3-phosphocholine. Corresponding values for the diacyl and 1-O-alk-l′-enyl-2-acyl species were 23% and 25%, respectively, based on all 20∶4(n−6) being linked to thesn-2 position of all classes. In the ethanolamine-linked phosphoglycerides, arachidonate constituted 60%, 20% and 68% of the acyl groups in thesn-2 position of the 1,2-diacyl, 1-O-alkyl-2-acyl and 1-O-alk-l′-enyl-2-acyl classes, respectively. The content of 1-O-alkyl-2-acyl-sn-glycero-3-phosphocholine appears sufficient to support the synthesis of platelet activating factor by a deacylation-reacylation pathway in platelets. Our findings also demonstrate that human platelets contain a significant amount of 1-O-alkyl-2-arachidonyl-sn-glycero-3-phosphocholine that could possibly serve as a precursor of both platelet activating factor and bioactive arachidonate metabolites.  相似文献   

14.
The existence of ether-linked phospholipids, including 1-O-alk-1′-enyl-2-acyl and 1-O-alkyl-2-acyl-sn-glycero-3-phosphocholines and ethanolamines in bonitoEuthynnus pelamis (Linnaeus) white muscle, was investigated by gas chromatography and gas chromatography-mass spectrometry. Chemical ionization (iso-butane) mass spectrometry of trimethylsilyl ethers derived from the corresponding ether-linked glycerophospholipids proved effective not only for determining molecular weights but also for structural identification based on the ions [M−R]+, [M−RO]+ and [M+1]+. 1-O-Alk-1′-enyl-2-acyl-sn-glycero-3-phosphocholine and ethanolamine accounted for 3.0–6.0% and 3.6–7.6% of the total glycerophospholipids, respectively. 1-O-Alkyl-2-acyl-sn-glycero-3-phosphocholine and ethanolamine were also determined for one fish and accounted for 1.4% and 0.6% of the total glycerophospholipids, respectively. The predominant long chains in thesn-1 position of the glycerol moieties were 16∶0, 18∶0 and 18∶1 in the case of the alkenylacyl and alkylacyl components. Fatty acid distribution of individual glycerophospholipids was also determined.  相似文献   

15.
The time course of hydrolysis of a mixed phospholipid substrate containing bovine liver 1,2-diacyl-sn-glycero-3-phosphocholine (PC) and 1,2-diacyl-sn-glycero-3-phosphoethanolamine (PE) catalyzed byCrotalus adamanteus phospholipase A2 was measured before and after peroxidation of the lipid substrate. The rate of hydrolysis was increased after peroxidation by an iron/adenosine diphosphate (ADP) system; the presence of iron/ADP in the assay had a minimal inhibitory effect. The rate of lipid hydrolysis was also increased after the substrate was peroxidized by heat and O2. Similarly, peroxidation increased the rate of hydrolysis of soy PC liposomes that did not contain PE. In order to minimize interfacial factors that may result in an increase in rate, the lipids were solubilized in Triton X-100. In mixtures of Triton with soy PC in the absence of PE, peroxidation dramatically increased the rate of lipid hydrolysis. In addition, the rate of hydrolysis of the unoxidizable lipid 1-palmitoyl-2-[1-14C]oleoyl PC incorporated into PC/PE liposomes was unaffected by peroxidation of the host lipid. These data are consistent with the notions that the increase in rate of hydrolysis of peroxidized PC substrates catalyzed by phospholipase A2 is due largely to a preference for peroxidized phospholipid molecules as substrates and that peroxidation of host lipid does not significantly increase the rate of hydrolysis of nonoxidized lipids.  相似文献   

16.
Most saturated diacyl phosphatidylcholines C(X):C(Y)PC (saturated 1,2-diacyl-sn-glycero-3-phosphocholine with X carbons in thesn-1 acyl chain and Y carbons in thesn-2 acyl chain), in excess water, can self-assemble into lamellae which, upon heating, may undergo multiple thermotropic phase transitions at well-defined, discrete temperatures. The transition temperature corresponding to the main or the gel to liquid-crystalline phase transition (Tm) is known for many bilayers of fully hydrated phosphatidylcholines. In this study, we have analyzed the Tm values of 44 molecular species of phosphatidylcholines in terms of their structural and packing characteristics in the gel-state bilayer. Two general equations are thus derived: Tm=162.26−3651.71 (1/N)−88.42 (ΔC/N) for C(X):C(Y)PC with X≥Y, and Tm=157.68−3525.44 (1/N)−93.28 (ΔC/N) for C(X):C(Y)PC with X<Y. Here, N is the minimal hydrophobic thickness of the dimeric C(X):C(Y)PC in the gel-state bilayer and ΔC is the effective chain length difference between thesn-1 andsn-2 acyl chains for the monomeric C(X):C(Y)PC in the gel-state bilayer. The advantage of these two equations in predicting the Tm values for phosphatidylcholines with ΔC/CL values in the range of 0.07 to 0.40 is their simplicity. A figure containing a total of 173 calculated Tm values is also presented.  相似文献   

17.
M. V. Bell 《Lipids》1989,24(7):585-588
Molecular species of the 3,5-dinitrobenzoyl derivatives of phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidylinositol (PI) were quantitated by UV detection at 254 nm after reversed-phase HPLC using solvent systems modified from Takamuraet al. (Lipids 21, 356–361, 1986). Three isocratic solvent systems were used and a total of 39 different molecular species detected. Four species, 16∶0/20∶5, 18∶1/20∶5, 16∶0/22∶6 and 18∶1/22∶6 contributed 67.2% and 61.8% of PC and PE respectively but only 23.0% of PI. In PI the most important species was 18∶0/20∶4 at 36.7% but this species only constituted 0.7% in each of PC and PE. Small amounts of dipolyunsaturated species were also found in PC and PE. Molecular species are abbreviated as follows: e.g., 16∶0/20∶5 PC is 1-palmitoyl-2-eicosapentaenoyl-sn-glycero-3-phosphocholine.  相似文献   

18.
Described is a reaction sequence for the total synthesis of lyso platelet activating factor (lysoPAF; 1-O-alkyl-sn-glycero-3-phosphocholine) and its enantiomer. The procedure is versatile and yields optically pure isomers of defined chain length. The synthesis is equally suited for the preparation of lysoPAF analogues and its enantiomers with unsaturation in the long aliphatic chain. First,rac-1(3)-O-alkylglycerol is prepared by alkylation ofrac-isopropylideneglycerol with alkyl methanesulfonate followed by acid-catalyzed removal of the ketal group. The primary hydroxy group of alkylglycerol is then protected by tritylation, the secondary hydroxy group is acylated, and the protective trityl group is removed under mild acidic conditions with boric acid on silicic acid, essentially without acyl migration. Condensation of the diradylglycerol with bromoethyl dichlorophosphate in diethyl ether, hydrolysis of the resulting chloride, and nucleophilic displacement of the bromine with trimethylamine givesrac-1-O-alkyl-2-acylglycero-3-phosphocholine in good overall yield. The racemic alkylacylglycerophosphocholine is finally treated with snake venom phospholipase A2 (Ophiophagus hannah) which affords 1-O-alkyl-sn-glycero-3-phosphocholine (lysoPAF) of natural configuration in optically pure form. The “unnatural” 3-O-alkyl-2-O-acyl-sn-glycerol-1-phosphocholine enantiomer, which is not susceptible to phospholipase A2 cleavage, gives 3-O-alkyl-sn-glycero-1-phosphocholine upon deacylation with methanolic sodium hydroxide. Homogeneity and structure of the intermediates and final products were ascertained by carbon-13 nuclear magnetic resonance spectroscopy on monomeric solutions.  相似文献   

19.
Using the spectrofluorimetric method described by Wittenaueret al. [Wittenauer, L.A., Shirai, K., Jackson, R.L., and Johnson, J.D. (1984)Biochem. Biophys. Res. Commun. 118, 894–901] for phospholipase A2 (PLA2) measurement, we have detected a phospholipase activity in Ailsa Craig and in mutantrin tomatoes at their normal harvest time (mature green stage). This activity in Ailsa Craig tomatoes increased at the beginning of fruit ripening (green-orange stage) and then decreased slowly. The decrease in activity, however, was greater when ripening occurred after tomato picking at normal harvest time than when ripening occurred on tomato plants. This phospholipase activity was always higher inrin tomatoes than in normal ones. Thin-layer chromatography of compounds obtained after incubation of tomato extract demonstrated a decrease in the substrate 1-acyl-2-{6[(7-nitro-2,1,3, benzoxadiazol-4-yl)amino]-caproyl}-sn-glycero-3-phosphocholine (C6-NBD-PC), and an increase in one product (NBD-aminohexanoic acid), but failed to detect the second product (1-acyl-sn-glycero-3-phosphocholine). We, therefore, developed a new one-step method for separation and quantification of a mixture of phospholipids and other lipids, using straight-phase-high-performance liquid chromatography with light-scattering detection. This method detected another fatty acid-releasing activity in enzyme extract from green-orange tomatoes. This lipolytic enzyme (or family of enzymes) slowly produced free fatty acids when 1-oleoyl-sn-glycero-3-phosphocholine was added as substrate. The production of fatty acids was stoichiometric and more rapid when 1-oleoyl-sn-glycero-3-phosphate and 1-oleoyl-sn-glycerol were used as substrates. On the other hand, the same tomato extract was unable to hydrolyze 1,2-dioleoyl-sn-glycero-3-phosphate and 1,2-dioleoyl-sn-glycerol. Crude tomato extract exhibited lipid acyl hydrolase activity according to the definition of Galliard [Galliard, T. (1979), inAdvances in the Biochemistry and Physiology of Plant Lipids (Appelqvist, L.A., and Liljenberg, C. eds.), pp. 121–132, Elsevier, Amsterdam]. But in order to demonstrate whether tomato extract contains PLA2 activity and/or lysophospholipase activity, further work on purified tomato extract will be necessary.  相似文献   

20.
Membrane proteins are essential for many cell processes yet are more difficult to investigate than soluble proteins. Charged residues often contribute significantly to membrane protein function. Model peptides such as GWALP23 (acetyl-GGALW5LAL8LALALAL16ALW19LAGA-amide) can be used to characterize the influence of specific residues on transmembrane protein domains. We have substituted R8 and R16 in GWALP23 in place of L8 and L16, equidistant from the peptide center, and incorporated specific 2H-labeled alanine residues within the central sequence for detection by solid-state 2H NMR spectroscopy. The resulting pattern of [2H]Ala quadrupolar splitting (Δνq) magnitudes indicates the core helix for R8,16GWALP23 is significantly tilted to give a similar transmembrane orientation in thinner bilayers with either saturated C12:0 or C14:0 acyl chains (1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC) or 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC)) or unsaturated C16:1 Δ9 cis acyl chains. In bilayers of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC; C18:1 Δ9 cis) multiple orientations are indicated, whereas in longer, unsaturated 1,2-dieicosenoyl-sn-glycero-3-phosphocholine (DEiPC; C20:1 Δ11 cis) bilayers, the R8,16GWALP23 helix adopts primarily a surface orientation. The inclusion of 10–20 mol % cholesterol in DOPC bilayers drives more of the R8,16GWALP23 helix population to the membrane surface, thereby allowing both charged arginines access to the interfacial lipid head groups. The results suggest that hydrophobic thickness and cholesterol content are more important than lipid saturation for the arginine peptide dynamics and helix orientation in lipid membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号