首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The characteristics of electric double-layer capacitors (EDLCs) with activated carbon powder (ACP), pulverized activated carbon fiber (ACF), and ACF-cloth have been compared. The BET surface areas of the ACP and ACF were estimated to be 1740 and 1970 m2 g−1, respectively. In the pore-size distribution curve of the ACP and ACF, the most dominant pore diameter was 1.8 and 1.1 nm for the ACP and ACF, respectively. Disc- and cloth-type of electrodes were fabricated using ACP and ACF. The electrical resistance of the ACF-disc and ACF-cloth electrodes was four orders of magnitudes lower than that of the ACP-disc electrodes. In accordance with the lower electrical resistance of the ACF-disc and ACF-cloth, the d.c. resistance of the EDLC with the ACF-disc and with ACF-cloth was lower than that of the EDLC with the ACP-disc. The highest specific volume capacitance of 28.3 F cm−3 (capacitance / volume of total ACF in the EDLC) was achieved with the ACF-disc. In the cyclic voltammograms of the ACF-disc, the stable electric double-layer charging and discharging behavior was observed.  相似文献   

2.
Poly(vinylidene fluoride-co-hexafluoropropene) (PVDF–HFP)-based polymer electrolytes embedded with 1-ethyl-3-methylimidazolium tetrafluoroborate ioniliquid have been synthesized to improve the ionic conductivity. Electric double-layer capacitors (EDLC) have been prepared using the synthesized polymer electrolytes. Inorganic oxide fillers (5 wt %) such as titanium dioxide (TiO2) and zinc oxide (ZnO) nanoparticles have been added to polymer electrolytes to compare the electrochemical behavior of the fabricated EDLC. The intrinsic dielectric constant of nanoparticles contributes in ionic dissociation which enhances ionic conductivity of electrolytes and also controls the specific capacitance of the EDLC fabricated with these electrolytes. Physicochemical properties of polymer nanocomposites have been investigated using X-ray diffraction, differential scanning calorimetry, and Fourier transform infrared analysis, which confirms decrease of crystalline phase in host polymer PVDF–HFP. The maximum voltage stability is obtained for TiO2-based polymer electrolyte. The high specific capacitance as well as high energy density is obtained for the EDLC cell with TiO2-based polymer electrolyte compared to EDLC with ZnO nanoparticles-based electrolyte. EDLC cells show specific capacitance of 76.4 and 44.51% of initial specific capacitance value at 2000th cycle for ZnO and TiO2-based polymer electrolytes, respectively. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48757.  相似文献   

3.
Carbon nanotubes were deposited directly on SUS304 plates by PECVD with acetylene and hydrogen as precursors under various deposition conditions. Raman spectroscopy showed that carbon nanotubes were not fully graphitized at the deposition temperatures, 600 to 750 ‡C, although defects decreased with increase of deposition temperature. SEM microscopy showed that carbon nanotubes were not straight, but their growth followed the tip growth model. Pretreatment of the substrate such as polishing and dipping in HF solution was required for the successful deposition. Using non-aqueous electrolyte we fabricated electrical double layer capacitance (EDLC) with SUS304 plates, on which carbon nanotubes were deposited, without any treatment, and measured charge/discharge characteristics. Discharge capacitance decreased with cycles from initial value of 128 F/g, but stabilized at 58 F/g after 50 cycles.  相似文献   

4.
A high rate capability is a primary requirement for an electric double-layer capacitor (EDLC) in practical applications, which is mainly governed by the ionic diffusion rate. Construction of the electrode structure with proper paths for the rapid transport of ions is an efficient method to facilitate the diffusion of ions in the electrode. In this study, we prepared multi-walled carbon nanotube microspheres (MWNTMS) with a stable porous structure via the spray drying method. The MWNTMS act as a local electrolyte micro-reservoir and provide stable ion transport paths in the EDLC electrode, which will facilitate the access of the electrode to the electrolyte and accelerate the diffusion rate of the ions. Using only MWNTMS as active materials, an areal capacitance of 105 mF/cm2 at 30 A/g is observed at an areal density of 7.2 mg/cm2. When the MWNTMS are combined with reduced graphene oxides (rGO) to form an rGO-MWNTMS hybrid electrode with an areal density of 3.0 mg/cm2, a high areal capacitance of 136 mF/cm2 at 100 A/g is observed. This rGO-MWNTMS-based EDLC presents a high areal power density of 1540 mW/cm2. These favorable results indicate that MWNTMS are promising materials for applications in high power supercapacitors.  相似文献   

5.
We present the electrochemical performance of solid-state EDLCs constructed using composites of perfluorosulfonic acid polymer (Nafion) with micro porous polytetrafluoroethylene (PTFE) membrane and with cellulose acetate (CA), as electrolyte with carbon as electrodes (surface area: 260 m2 g−1). The performance is compared with EDLCs constructed with perfluorosulfonic acid polymer as electrolyte. Scanning electron microscopy is used to study the morphology of the composite electrolyte while micro-Raman and IR measurements determine the integrity of the composite. The performance of the EDLC with perfluorosulfonic acid and PTFE composite electrolyte is good and comparable with the performance of the EDLC with pure perfluorosulfonic acid polymer electrolyte. A specific capacitance of 16 F g−1 is obtained for this EDLC with a maximum working potential of 2.0 V. There is an increase in the equivalent series resistance value from 0.08 Ω for the Nafion EDLC to 4.1 Ω for the Nafion/PTFE composite EDLC. However, the performance of the EDLC with the composite of Nafion/CA is poor due to substantial increase in ESR. The probable reasons are discussed.  相似文献   

6.
The electrospinning of polyacrylonitrile (PAN) with a polyaniline and graphene sol–gel mixture produced uniform, smooth fibers with an average diameter of 0.3 μm. These electrospun fibers were stabilized for 2 h at 200 °C and then carbonized at 800 °C for 5 h. Composites were prepared by depositing Ni(OH)2 on the carbon nanofibers (CNFs) and calcining them at different temperatures. The composites were characterized with X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The effect of the calcination temperatures on the electrochemical properties was studied using cyclic voltammetry and electrochemical impedance spectroscopy. The specific capacitance (SC) was found to be highest (738 F g−1) at a calcination temperature of 400 °C. The charge transfer resistance (Rp) decreased as the calcination temperature was increased. However, the electrical double layer capacitance (EDLC) increased with an increase in the calcination temperature. The EDLC increased from 0.144 F g−1 at a calcination temperature of 100 °C to 485 F g−1 at a calcination temperature of 500 °C.  相似文献   

7.
The performance of a battery–electrical double layer capacitor (EDLC) hybrid power source at low ambient temperature has been experimentally analyzed. EDLC can enhance the performance of lead-acid battery as it acts as a buffer during charging and discharging, and plays more significant role at low temperature than room temperature. The behaviors of current and voltage of both battery and EDLC have been detailed studied, and described by a mathematical model. With EDLC assistance, the battery can maintain longer discharge duration at −25 and −10 °C, compared with the battery alone. Adding an EDLC in parallel with the battery exhibits a considerable capacity increase compared to battery standalone in continuous discharge processes: from 13.6 to 36.5 %, corresponding to 25 to 200 A. These improvements of capacity become even more significant at low temperature. The increases in available capacity of different pulse duty, amounted to 72, 58, and 4 % at 0.1, 0.5, and 0.9 duty cycle values, compared to the capacity measured at constant current rate, respectively (calculated by 50 A discharge).  相似文献   

8.
Graphene nanosheets (GNSs) with narrow mesopore distribution around 4 nm were mass-produced from natural graphite via the oxidation and rapid heating processes. The effects of oxidant addition on the morphology, structure and electrochemical performance of GNSs as electrode materials for electric double-layer capacitor (EDLC) were systematically investigated. The electrochemical properties of EDLC were influenced by the specific surface area, pore characteristics, layer stacking and oxygen-containing functional group contents of electrode materials. Deeper oxidation makes graphite possess both higher specific surface area and more graphene edges, which are favorable for the enhancement of capacitive performance of EDLC. The electrodes with freestanding graphene nanosheets prepared by coating method exhibited good rate capability and reversibility at high scan rates (to 250 mV s−1) in electrochemical performances. GNS electrode with specific surface area of 524 m2 g−1 maintained a stable specific capacitance of 150 F g−1 under specific current of 0.1 A g−1 for 500 cycles of charge/discharge.  相似文献   

9.
The low energy density of supercapacitors, especially supercapacitors based on aqueous electrolytes, is the main factor limiting their application, and the energy density is closely related to the operating potential window of the supercapacitor. The polymer electrolyte is the main contributor to the safe operation and good ion conductivity of the supercapacitor. In this study, a crosslinked quaternized poly(arylene ether sulfone) (PAES) membrane was prepared via crosslinking during membrane formation with a thermal-only treatment and applied in an electric double-layer capacitor (EDLC). The pre-prepared PAES membrane formed a polymer electrolyte with 1 mol/L Li2SO4 and was then fabricated into an EDLC single cell. The properties of both the membrane and ELDC were investigated. The preferred cPAES-N-0.2 polymer electrolyte showed an ionic conductivity of 1.18 mS/cm. The optimized EDLC exhibited a single-electrode gravimetric capacitance of 104.92 F/g at a current density of 1.0 A/g and a high operating potential window (1.5 V); it, thereby, achieved a high energy density of 8.20 W h/kg. The EDLC also exhibited excellent cycling properties over 3000 charge–discharge cycles. The crosslinked structures promoted the tensile strength and thermal stability of the PAES membranes; this was accompanied by a slight decrease in the ionic conductivity. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47759.  相似文献   

10.
Masahiro Toyoda  Yuji Tani 《Carbon》2004,42(14):2833-2837
Exfoliated carbon fibers (ExCFs) synthesized through the rapid heating of intercalation compounds of carbon fibers were examined as electrodes of electric double layer capacitors (EDLC). The measurement of EDLC was performed using a standard three-electrode cell with 1 mol/dm3 sulfuric acid electrolyte. The capacitance of as-prepared ExCFs reached 117 F/g, even though they had a relativity small surface area of about 330 m2/g. After air activation of ExCFs, the BET surface area increased slightly, but the capacitance of the EDLC increased up to 160 F/g. Capacitance of ExCFs strongly depended on their BET surface area, having a different dependence from that reported on activated carbon fibers.  相似文献   

11.
For new application of technical lignins as separator material for electric double-layer capacitor (EDLC), we tried first to prepare bipolyester film by melt-polycondensation of polyethylene glycol lignin (PEGL) and maleic anhydride. The EDLC assembled with this film, however, showed lower electrochemical performance than the reference EDLC with commercial cellulosic separator. Porous bipolyester film was then prepared and the resulting EDLC exhibited improved specific capacitance, but high intrinsic and charge transfer resistances. Non-porous terpolyester film was prepared next, using polyethylene glycol 500,000 to improve flexibility of the film, which might lower the resistances. This film was flexible enough and provided the resulting EDLC with superior electrochemical performance to the bipolyester film. EDLC with porous terpolyester film was finally prepared and showed the highest electrochemical performance, comparable to the reference EDLC. Porous morphology and flexibility were key factors to fabricate lignin-based self-standing film as separator material for high-performance EDLC.  相似文献   

12.
In this study, effects of addition of carbon nanotubes (CNTs) and graphene platelets (GPLs) on characteristics of carbon/basalt fiber reinforced intra-ply hybrid composites were investigated. The composites were fabricated using vacuum assisted resin infusion molding (VARIM) method in two types including bare and 0.1, 0.5 wt.% of GPL and CNT nanoparticles filled hybrid composites. Fabricated normal and multiscale composites were cut by water jet and mechanical properties of specimens were examined by tensile, flexural, SBS experiments. Therefore, the modulus of elasticity, flexural modulus, tensile and flexural strength and ILSS of bare and multiscale composites were compared. Thermomechanical properties of fabricated composites were evaluated by dynamic mechanic analyze (DMA), thermogravimetric analyze ( TGA) and thermal conductivity (TC) tests and storage modulus, loss modulus, damping ratio, glass transition temperature, weight loss and derivative weight loss were compared in fabricated normal and multiscale composites. Similarly, modal properties of fabricated composites such as natural frequency and damping factor were obtained by vibrational tests and compared in fabricated composites. According to the results, the addition of carbon-based nanoparticles improved the characteristics of carbon/basalt fiber intra-ply hybrid composites. The response of composites was directly proportional to the addition ratio of the carbon-based nanoparticles.  相似文献   

13.
Wenrong Li  Zheng Li  Dongyuan Zhao 《Carbon》2007,45(9):1757-1763
We reported the electrochemical studies on mesoporous carbon spheres (MCS) enriched in nitrogen on frameworks serving as an electrode for electric double layer capacitor (EDLC) in an organic electrolyte. The preparation of the carbon spheres is involved in a facile polymerization-induced colloid aggregation method by using melamine-formaldehyde resin (MF) as the carbon precursor, and commercial fumed silica (Aerosil-200) as a hard template. After the carbonization of as-formed resin-template composites at 1000 °C under a nitrogen atmosphere, and the removal of silica template by HF treatment, monodisperse MCS with diameter size of ∼1.2 μm, high specific surface area (up to 1460 m2/g) and uniform pore size as large as 31 nm can be obtained. The MCS product presents a high specific capacitance as 159 F/g at 0.5 A/g. The high specific capacitance of the MCS is believed to be associated with its suitable nitrogen content that can afford pseudocapacitance as well as the high specific surface area. Furthermore, the specific capacitance of MCS can remain 130 F/g at high current density of 20 A/g. Our results show that the moderate nitrogen content can enhance the surface wettability and reduce the resistance, the large pore size can accelerate the diffusion process for the ions solvated with big organic solvent molecules in the pores. In view of the facts that precursors used in this simple process are commercially available low-cost chemicals, researches on the synthesis of such MCS materials templated by silica nanoparticles may not only be theoretically important, but also provide more options for economical and large-scale productions of mesoporous carbon materials with desired nanostructures, which might find practical applications in the fields of EDLC with high power performance.  相似文献   

14.
Increasing the available cell voltage for electrochemical double layer capacitors (EDLC) is one route to simultaneously increase energy density and power density of the EDLC. Increased cell voltage may, however, introduce faradaic reactions such as ion insertion and electrolyte decomposition, which potentially limit the lifetime of the device. Using a purpose designed pressure cell, we have, for the first time, measured the pressure increase in capacitor cells based on real EDLC electrode coils in 1 M (C2H5)4NBF4/propylene carbonate electrolyte during cycling between 0 and 2.5 V and for constant cell voltages up to 3 V. During cycling a reversible pressure decrease was observed upon charging. An irreversible pressure increase was monitored during load tests at constant cell voltages above 2.5 V. The absolute amount of gases evolved could be determined by means of simultaneous compressibility monitoring.  相似文献   

15.
An aliphatic quaternary ammonium salt which has a methoxyethyl group on the nitrogen atom formed an ionic liquid (room temperature molten salt) when combined with the tetrafluoroborate (BF4) and bis(trifluoromethylsulfonyl)imide [TFSI; (CF3SO2)2N] anions. The limiting oxidation and reduction potentials, specific conductivity, and some other physicochemical properties of the novel ionic liquids, N,N-diethyl-N-methyl-N-(2-methoxyethyl)ammonium tetrafluoroborate (DEME-BF4) and DEME-TFSI have been evaluated and compared with those of 1-ethyl-3-methylimidazolium tetrafluoroborate. DEME-BF4 is a practically useful ionic liquid for electrochemical capacitors as it has a quite wide potential window (6.0 V) and high ionic conductivity (4.8 mS cm−1 at 25 °C). We prepared an electric double layer capacitor (EDLC) composed of a pair of activated carbon electrodes and DEME-BF4 as the electrolyte. This EDLC (working voltage ∼2.5 V) has both, a higher capacity above room temperature and a better charge-discharge cycle durability at 100 °C when compared to a conventional EDLC using an organic liquid electrolyte such as a tetraethylammonium tetrafluoroborate in propylene carbonate.  相似文献   

16.
Carbon nanotube reinforced carbon fiber/pyrolytic carbon composites were fabricated by precursor infiltration and pyrolysis method and their electromagnetic interference shielding effectiveness (EMI SE) was investigated over the frequency range of 8.2–12.4 GHz (X-band). Carbon nanotubes (CNTs) were in situ formed through catalyzing hydrocarbon gases evaporating out of phenolic resin with nano-scaled Ni particles. The content of CNTs increased with the increase of Ni loadings (0.00, 0.50, 0.75 and 1.25 wt.%) in phenolic resin. Thermal gravimetrical analysis results showed that the carbon yield of phenolic resin increased with the addition of Ni catalyst. With the formation of CNTs, the EMI SE increased from 28.3 to 75.2 dB in X-band. The composite containing 5.0 wt.% CNTs showed an SE higher than 70 dB in the whole X-band.  相似文献   

17.
Electrochemical behavior of metallic and semiconducting single-wall carbon nanotubes (SWCNTs) separated by agarose gel chromatography was analyzed as electrodes of electric double-layer capacitor (EDLC). Due to the doping of ions to semiconducting SWCNTs, the cyclic voltammogram of semiconducting SWCNTs showed amphoteric behavior, which is analogous to that of dopable conducting polymers. As the potential was increased or decreased from the flat band potential, the capacitance of semiconducting SWCNTs was increased, but that of metallic SWCNTs was slightly increased. The high capacitance of semiconducting SWCNTs at the high potential is beneficial for EDLC due to the possible limitation of capacitance.  相似文献   

18.
We fabricated large-scale anisotropic carbon nanotube (CNT) paper sheets by stacking long-lasting multiwalled CNT (MWCNT) webs without using binder materials. The MWCNTs are highly aligned in the webs and they retain their alignment in the fabricated paper. Although MWCNTs are just connected by van der Waals force, tensile strength is as strong as 75.6 MPa. In addition, resistivity and thermal conductivity is as good as 2.5 × 10−3 Ω cm and 70 W/m K, respectively. The present high anisotropy ratios of 7.3 in resistivity and of 8.1 in thermal conductivity are due to the high alignment of the ultra-long MWCNTs which have lengths of millimeters. High-speed web drawing with a draw speed of over 10 m/s enables very rapid fabrication. The material properties of CNT structures can be measured by conventional methods for macroscopic samples rather than methods designed for nanomaterials. CNT web technology will enable CNTs to be used in new applications.  相似文献   

19.
Activated carbon fibers (ACFs) with large surface area were easily prepared from melt-spun fibers of polyethylene glycol lignin (PEGL). To fabricate electric double-layer capacitors (EDLCs) with a wide potential window and a high energy density in an EDLC package, electrodes (mainly composed of ACFs) were internally laminated and connected in series, in parallel, or in a series/parallel combination. Such resultant EDLCs are termed internal tandem (IT) EDLCs. As expected, the potential window was expanded by the series connection, and the capacitance was increased by the parallel connection. As a result, the energy density in the parallel-connected EDLC was remarkably increased by 66% (16.6 Wh kg?1) compared with that of a single-cell EDLC. The EDLC with the combination connection showed both advantages. Thus, based on the package weight, the electrochemical performance of the EDLCs was remarkably improved by the IT-type lamination of electrodes.  相似文献   

20.
Jae Hong Kim  Sang Bok Ma 《Carbon》2006,44(10):1963-1968
Carbon nanotube (CNT) film electrodes were fabricated by a novel process involving the electrostatic spray deposition (ESD) of a CNT solution. Acid treated CNTs were dispersed in an aqueous solvent through sonication and then the CNT solution was electrostatically sprayed onto a metallic substrate by the ESD method. The CNT film electrodes showed well-entangled and interconnected porous structures with good adherence to the substrate. A specific capacitance of 108 F/g was achieved for the electrodes in 1 M H2SO4. In addition, the CNT film electrode showed good high rate capability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号