首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hot rolling texture development in CMnCrSi dual-phase steels   总被引:1,自引:0,他引:1  
The amount of strain below the temperature of nonrecrystallization, T nr , has an important influence on the phase fractions and the final crystallographic texture of a hot-rolled dual-phase ferrite+martensite CMnCrSi steel. The final texture is influenced by three main microstructural processes: the recrystallization of the austenite, the austenite deformation, and the austenite-to-ferrite transformation. The amount of strain below T nr plays a major role in the relative amounts of deformed and recrystallized austenite after rolling. Recrystallized and deformed austenite have clearly different texture components and, due to the specific lattice correspondence relations between the parent austenite phase and its transformation products, the resulting ferrite textures are different as well. In addition, austenite deformation textures result from either dislocation glide or the combination of dislocation glide and mechanical twinning, depending on the stacking fault energy (SFE). The texture components in hot-rolled dual-phase steels were studied by means of X-ray diffraction (XRD) measurements and orientation imaging microscopy (OIM). A clear crystallographic orientation difference was observed between the ferrite phase, transformed at temperatures near A r3 , and the ferritic bainite and martensite phases, formed at lower temperatures. The results suggest that the primary ferrite, nucleated at temperatures close to A r3 , transformed from the deformed austenite. The low-temperature constituents, bainite and martensite, form in the recrystallized austenite.  相似文献   

2.
《Acta Metallurgica Materialia》1994,42(11):3615-3627
The way in which texture development is affected by austenite pancaking was studied in a plain carbon and a niobium steel. Three processing parameters (austenitizing temperature, finish rolling temperature and amount of reduction) were varied, and their influence on the state of the austenite was analyzed. It was found that the presence of niobium, which leads to pancaking of the austenite when low finishing temperatures are employed, strengthened the transformation products produced from the copper, brass, S and Goss orientations in the austenite. Larger reductions resulted in sharper textures, especially in the microalloyed steel. The effect of austenitizing temperature was not particularly strong. Several f.c.c. ideal orientations were transformed according to the Kurdjumov-Sachs relationship, and the b.c.c. products resulting from this analysis are compared with the experimental results. When recrystallized austenite transforms, it is shown that the cube component transforms preferentially into the {001}<110> rotated cube orientation, with lower than expected intensities displayed by the Goss and rotated Goss components. Similar trends are observed with respect to the four main deformation components; these tendencies are interpreted in terms of variant selection and selective growth.  相似文献   

3.
Due to the friction between rolls and sheet surface, shear texture inevitably occurs in the surface layer of the hot-rolled sheets in electrical steel. The shear texture contains Goss texture {110}<001>, brass texture {110}<112>, and copper texture {112}<111>. The existence of shear texture and its corresponding microstructure affect the texture distribution in the subsequent normalized sheets, cold-rolled sheets, and final sheets. Electron backscattered diffraction and reaction stress model are used herein to study the formation conditions of {112}<111> orientation in the hot-rolled sheets. The results show that initial rotated cube orientation tends to rotate around transverse direction to the copper orientation during hot rolling due to the shear action. Different shear orientations can be formed in different regions of an initial coarse columnar grain during hot rolling, because of the change in surrounding environment reaction and the difference of the shear strain at different thickness positions. The thinner the hot-rolled sheet is, the smaller the dynamic recrystallization region with shear orientation, and there is almost no copper texture in the thinnest hot-rolled sheet. The simulation results show that the copper texture is easy to form under the action of σ23 and σ22 reaction stresses.  相似文献   

4.
蒋虽合  毛卫民  杨平  叶丰 《工程科学学报》2014,36(12):1643-1649
用电子背散射技术观察了700℃温轧板在退火过程中的组织及织构演变以了解其再结晶行为.结果表明,温轧织构由强的(111)〈112〉、较弱的〈110〉∥RD及Goss组成,再结晶织构与之相似.〈110〉∥RD及(111)〈112〉新晶粒首先形成于与之构成小角度晶界的形变晶粒的晶界附近,而在角隅及组织不均匀区等位置孕育出与周围晶粒构成大角度晶界的晶核,择优取向不明显.退火过程中(111)〈112〉在形变组织中累积,最终转化为(111)〈112〉再结晶晶粒.分析认为,温轧后退火是不均匀组织在低储存能驱动下的再结晶过程.(112)〈110〉及(111)〈112〉形变拉长晶粒多发生连续再结晶从而退火织构与形变态相似.在角隅区形成核心进而发生不连续再结晶,核心取向的统计性及不连续晶核的长大弱化再结晶织构,其中Goss晶粒多以此方式形成于(111)〈112〉晶粒内部.  相似文献   

5.
研究了CSP流程试制50W270高牌号无取向硅钢热轧→常化→冷轧→退火过程中织构的演变.利用电子背散射衍射技术对全流程织构进行测量和分析.发现热轧板织构在厚度方向上存在较大差异,表层主要为铜型、黄铜和高斯织构,1/4层存在微弱的高斯织构和旋转立方织构,中心层以γ纤维织构和旋转立方织构为主,还含有较弱的α纤维织构.与热轧板相比,常化板表层和1/4层织构变化不大,中心层旋转立方织构和α纤维织构增强.冷轧板各层均具有α纤维织构和γ纤维织构.与冷轧板相比,成品板各层中α纤维织构基本消失,还出现了立方织构和高斯织构.  相似文献   

6.
利用背散射电子衍射微织构分析技术及X射线衍射织构分析技术,结合对取向硅钢薄带再结晶各阶段退火板磁性能的分析,系统研究了其形变再结晶过程中的组织及织构演变.结果表明,薄带内原始高斯晶粒取向发生绕TD轴向{111}〈112〉的转变,同时晶粒取向还表现出绕RD轴的附加转动,这种附加转动及其导致的表层微弱立方形变组织可为再结晶立方织构的形成提供核心.退火各阶段样品磁性能的变化对应了{110}-{100}〈001〉有益织构及其他织构的强弱转变以及再结晶晶粒不均匀程度的变化,综合织构类型及晶粒尺寸的变化推断发生了二次及三次再结晶过程.升温过程再结晶织构演变主要体现了织构诱发机制,也即与基体存在绕〈001〉轴取向关系的晶粒长大优势结合高斯织构的抑制效应发挥作用;而在高温长时间保温后三次再结晶过程,{110}低表面能诱发异常长大发挥主要作用使得最终得到锋锐的高斯织构.  相似文献   

7.
The present work investigates the effect of cold deformation on the evolution of microstructure and textures during recrystallization in 0.08%C steel. The cold rolling texture consists of partial α-fiber (RD//〈110〉) and complete γ-fiber (ND//〈111〉) along with Goss ({110}〈001〉) and cube ({100}〈100〉}) texture components. The sharpness of α-fiber, γ-fiber and cube component increases with the increase in rolling reduction from 70 to 85% while that of Goss component decreases. After recrystallization (750 and 800°C), the textures were composed of α and γ-fiber along with significant Goss components. The strength of γ-fiber decreases after annealing. The presence of Goss component in recrystallization textures is attributed to preferential nucleation in {111}〈112〉 type deformed grains.  相似文献   

8.
Repetitive thermomechanical processing (TMP) was applied for evaluating the effect of strain-induced α′-martensite transformation and reversion annealing on microstructure refinement and mechanical properties of 304 austenitic stainless steel. The first TMP scheme consisted of four cycles of tensile deformation to strain of 0.4, while the second TMP scheme applied two cycles of tensile straining to 0.6. For both schemes, tensile tests were conducted at 173 K (? 100 °C) followed by 5-minute annealing at 1073 K (800 °C). The volume fraction of α′-martensite in deformed samples increased with increasing cycles, reaching a maximum of 98 vol pct. Examination of annealed microstructure by electron backscattered diffraction indicated that increasing strain and/or number of cycles resulted in stronger reversion to austenite with finer grain size of 1 μm. Yet, increasing strain reduced the formation of Σ3 boundaries. The annealing textures generally show reversion of α′-martensite texture components to the austenite texture of brass and copper orientations. The increase in strain and/or number of cycles resulted in stronger intensity of copper orientation, accompanied by the formation of recrystallization texture components of Goss, cube, and rotated cube. The reduction in grain size with increasing cycles caused an increase in yield strength. It also resulted in an increase in strain hardening rate during deformation due to the increase in the formation of α′-martensite. The increase in strain hardening rate occurred in two consecutive stages, marked as stages II and III. The strain hardening in stage II is due to the formation of α′-martensite from either austenite or ε-martensite, while the stage-III strain hardening is attributed to the necessity to break the α′-martensite-banded structure for forming block-type martensite at high strains.  相似文献   

9.
《Acta Metallurgica》1986,34(11):2247-2257
The generation of the fine grained, dynamically recrystallized microstructure has been studied in hot rolled copper and α brasses and in 70:30 brass deformed by hot torsion. The new grains, which developed preferentially at grain boundaries and inhomogeneities of deformation, contained none of the deformation features present in unrecrystallized parts of the microstructure. This observation is contrary to theories of dynamic recrystallization which imply that the microstructure contains a spectrum of grains ranging from just recrystallized to severely deformed. Texture studies showed cold rolled textures at low rolling temperatures but in the case of copper the texture became quite flat after rolling at 350 and 425 °C. Flat textures were associated with a minimum grain size. At higher rolling temperatures the textures were again typical of cold rolled material. It is suggested that while normal slip processes are operating at all temperatures there is an additional contribution from grain boundary deformation processes associated with fine grained microstructures. Such processes would account for the absence of normal deformation features from dynamically recrystallized microstructures.  相似文献   

10.
TRIP sheet steels typically consist of ferrite, bainite, retained austenite, and martensite. The retained austenite is of particular importance because its deformation‐induced transformation to martensite contributes to excellent combinations of strength and ductility. While information is available regarding austenite response in uniaxial tension, less information is available for TRIP steels with respect to the forming response of retained austenite in complex strain states. Therefore, the purpose of this work was to study the austenite transformation behaviour in different strain paths by determining the amount of retained austenite before and after forming. Forming experiments were performed on a high strength 0.19C‐1.63Si‐1.59Mn TRIP sheet steel 1.2 mm in thickness in two different strain conditions, uniaxial tension (ε1 = ‐2ε2) and balanced biaxial stretching (ε1 = ε2). Specimens were formed to strains ranging from zero to approximately 0.2 effective (von Mises) strain. Specimens were tested both longitudinally and transverse to the rolling direction in uniaxial tension, and subtle mechanical property differences were found. The volume fraction of austenite, determined with X‐ray diffraction subsequent to forming, was found to decrease with increasing strain for both forming modes. Some modification in the crystallographic texture of the ferrite was observed with increasing strain, in specimens tested in the balanced biaxial stretch condition. This trend was not evident in the uniaxial tensile test results. Slight differences were found in the transformation behaviour of the austenite when formed in different strain conditions. More austenite transformed in specimens tested parallel to the rolling direction than transverse to the rolling direction in uniaxial tension. The amount of austenite transformed during biaxial stretching was determined to be greater than the amount transformed in uniaxial tension for specimens tested transverse to the rolling direction at an equivalent von Mises strain. The amount of austenite that transformed in biaxial tension, however, was comparable to the amount of austenite that transformed in specimens tested longitudinal to the rolling direction in uniaxial tension.  相似文献   

11.
The effect of cooling rate on the microstructure and transformation textures of high strength hot-rolled steels was investigated.Heat treated samples subjected to different cooling conditions were characterized by optical and scanning electron microscopes using orientation imaging microscopy(OIM).The experimental results demonstrate that there is a significant effect of cooling rate on microstructures and textures resulting from phase transformation.Slow cooling rates lead to the appearance of the cube(001)[010],rotated cube(001)[110]/(001)[110],Goss(110)[001]and rotated Goss(110)[110]components.In contrast,textures developed at rapid cooling rates are preferably of Cu(112)[111],Br(110)[112],transformed Cu(113)[110]and transformed Br(332)[113]/(112)[131].These texture changes are attributed to the selective character of the phase transformation.The OIM technique was used to have a better understanding of the formation of phases and their relationship between microstructure and processing conditions.The volume fraction of micro-constituents resulting from phase transformation such as bainite,martensite and different types of ferrite,can be measured satisfactorily by this technique correlating image quality of EBSD patterns to specific phases.  相似文献   

12.
The occurrence of variant selection during the transformation of deformed austenite is examined, together with its effect on the product texture. A new prediction method is proposed based on the morphology of the austenite grains, on slip activity, and on the residual stresses remaining in the material after rolling. The aspect ratio of pancaked grains is demonstrated to play an important role in favoring selection of the transformed copper ({311}〈011〉 and {211}〈011〉) components. The extent of shear on active slip planes during prior rolling is shown to promote the formation of the transformed brass ({332}〈113〉 and {211}〈113〉) components. Finally, the residual stresses remaining in the material after rolling play an essential part by preventing growth of the {110}〈110〉 and {100}〈uvw〉 orientations selected by the grain shape and slip activity rules. With the aid of these three variant selection criteria combined, it is possible to reproduce all the features of the transformation textures observed experimentally. The criteria also explain why the intensities of the transformed copper components are sensitive to the pancaking strain, while those of the transformed brass are a function of the cooling rate employed after hot rolling.  相似文献   

13.
The phenomenon of secondary recrystallization in 3 pct Si-Fe electrical steel subjected to relatively high cold rolling reduction rates has been investigated. The texture of the secondary recrystallized sample that has a cold rolling reduction rate of 97.2 pct consists mainly of {110}〈112〉 component, which is quite different from the ideal Goss ({110}〈001〉) texture obtained after lower cold rolling reduction rates. The grain boundary character distribution (GBCD) analysis on the primary recrystallized sample with a cold rolling reduction rate of 97.2 pct indicates that the {110}〈112〉 component has the highest frequency of high energy (HE) boundary with a misorientation angle between 20 and 45 deg, whereas the Goss component in the sample subjected to lower cold rolling reduction rates has the highest frequency of HE boundary. These results indicate that the component with the highest frequency of HE boundary surrounding it after primary recrystallization has the privilege to outgrow other components during secondary recrystallization. However, the GBCD analysis for coincidence site lattice (CSL) boundary points out that the Goss component has the highest frequency of CSL boundaries in the primary recrystallized texture irrespective of the cold rolling reduction applied. These results suggest that the HE model can predict the orientation relationship between the primary and secondary recrystallized textures better than the CSL model.  相似文献   

14.
It is well established that the ferrite grain size of low-carbon steel can be refined by hot rolling of the austenite at temperatures below the nonrecrystallization temperature (T nr ). The strain retained in the austenite increases the number of ferrite nuclei present in the initial stages of transformation. In this work, a C-Mn-Nb steel has been heavily deformed by torsion at temperatures below the determined T nr for this steel. After deformation, specimens are cooled at a constant cooling rate of 1 °C/s, and interrupted quenching at different temperatures is used to observe different stages of transformation. The transformation kinetics and the evolution of the ferrite grain size have been analyzed. It has been shown that the stored energy due to the accumulated deformation is able to influence the nucleation for low undercoolings by acting on the driving force for transformation; this influence becomes negligible as the temperature decreases. At the early stages of transformation, it has been observed that the preferential nucleation sites of ferrite are the austenite grain boundaries. At the later stages, when impingement becomes important, ferrite coarsening accompanies the transformation and a significant reduction in the number of the ferrite grains per unit volume is observed. As a result, a wide range of ferrite grain sizes is present in the final microstructure, which can influence the mechanical properties of the steel.  相似文献   

15.
《Acta Metallurgica Materialia》1995,43(11):4117-4129
Average growth rates and misorientations between recrystallization nuclei (or grains) and neighbouring deformed matrix material have been studied for partially recrystallized samples by the electron back scattering pattern (EBSP) technique in heavily cold rolled aluminium and copper. It was studied how the annealing time and the crystallographic orientation of nuclei/grains affects the growth rates and distribution of misorientations. The two materials, aluminium and copper, develop a weak and a strong recrystallization cube texture respectively. Information about effects of cube texture strength was therefore also obtained. It was found that grains of cube orientation grow faster than grains of other orientations. A wide distribution of misorientation relationships was observed to exist between the growing grains and the neighbouring deformed matrix, and this distribution was not significantly affected by the annealing time. The faster growth of the cube oriented grains may be ascribed to a larger misorientation between cube grains and deformed matrix than that between other grains and the matrix.  相似文献   

16.
This paper deals with the evolution of texture in AISI 316L austenitic stainless steel during annealing after 95 pct cold rolling. After 95 pct cold rolling, the texture is mainly of the brass type {110}〈112〉, along with a scatter toward the S orientation {123}〈634〉 and Goss orientation {011}〈100〉. Weak evidence of Cu component is observed at this high deformation level. During annealing, recovery is observed before any detectable recrystallization. Recrystallization proceeds through nucleation of subgrain by twinning within the deformed matrix and, later, preferential growth of those to consume the deformed matrix. After recrystallization, the overall texture intensity was weak; however, there are some discernible texture components. There was no existence of the brass component at this stage. Major components are centered on Goss orientation and Cu component {112}〈111〉 as well as the BR component {236}〈385〉. Also, a few orientations come up after recrystallization (i.e., {142}〈2−11〉 and {012}〈221〉). With increase in annealing temperature, the textural evolution shows emergence of weak texture with another new component, {197}〈211〉. The evolution of texture was correlated with the deformation texture through twin chain reaction.  相似文献   

17.
18.
采用光学显微镜、X射线衍射仪等分析了宁波钢铁有限公司生产的取向硅钢不同工序下的组织及织构演变规律.结果 表明:铸坯经过热轧后,沿着厚度方向组织不均匀;一次冷轧并经脱碳退火后,组织由条状纤维状变成等轴状的初次再结晶晶粒,初次再结晶平均晶粒尺寸为18.17 μm,织构主要以α织构和γ织构为主;在二次冷轧后,晶粒再次被压缩,转变为纤维状,织构主要为γ织构;经过高温退火后,发生二次再结晶,晶粒异常长大,晶粒尺寸达到厘米级,织构成分为单一且锋锐的Goss织构.  相似文献   

19.
The electron back scattering pattern technique (EBSP) in SEM has been applied to follow in detail the orientation aspects of the nucleation and growth of recrystallization in cold rolled aluminium. The investigation includes both high purity metal and a commercial grade. The cube- and Goss-oriented recrystallized grains nucleate from transition bands. In the cube case these bands are found in the Cu- and ND-rotated-Cu deformation texture components while the Goss bands have been identified in the brass texture component. Shear bands in the S-deformation component have been identified as nucleation sites for recrystallization. The orientation inside the bands is also S (complementary to the matrix), causing the S-orientation to reappear as a recrystallization texture component. These types of deformation heterogeneities and others are frequently associated with a 40°C 〈111〉 orientation relationship to the surrounding matrix, making this specific orientation relationship primarily a property to be associated with the oriented nucleation concept. Isolated examples of a true 40° 〈111〉 growth selection due to the rapid growth of 〈111〉-tilt-boundaries have been observed. A characteristic aspect in these cases is a growth selection from a planar transformation front. From a careful literature review as well as from experimental observations no direct evidence has been found in support of the hypothesis that 40° 〈111〉 grains, when uniformly distributed in space, have a transformation rate potential exceeding that of grains belonging to other texture components. No growth selection has been found in the special case of the growth of cube oriented grains.  相似文献   

20.
《Acta Metallurgica》1984,32(12):2185-2201
A simple laboratory technique was developed to produce Goss-oriented specimens starting with commercial hot band of Fe-3.3%Si. The evolution of microstructure and texture including its throughthickness variation was followed through the subsequent stages of processing until final secondary recrystallization; the underlying mechanisms are discussed. In addition to pole figure determination the more quantitative and sensitive Orientation Distribution Function (ODF) analysis was applied. The results indicate that the structure of the hot band itself, consisting of large recrystallized grains of Goss orientation in the surface layers, exerts a strong influence on the eventual development of a sharp {011}〈100〉 Goss texture. Shear bands were observed after the first stage of cold rolling, and after the subsequent intermediate anneal, second cold rolling and primary recrystallization, strong 〈111〉∥ND fibres were observed. Through ODF analysis, a small number of {011}〈 100〉 oriented grains were revealed in the texture after primary recrystallization, again predominantly near the surface so that by chemical etching many of them could be removed. During the subsequent secondary recrystallization, these “Goss-nuclei” grew at the expense of all other matrix grains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号