首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The photostabilization of poly(styrene‐b‐ethylene‐co‐butylene‐b‐styrene) (SEBS) by phosphite/p‐hydroxybenzoate antioxidants and hindered phenol/hindered amine light stabilizers (HALS) was studied by using a variety of spectroscopic methods, including FTIR, UV, and luminescence spectroscopy coupled with crosslinking and hydroperoxide analysis. The results were compared with those obtained for hindered phenols and their combinations with phosphite antioxidants. All the stabilizing packages stabilized the SEBS in terms of the inhibition of discoloration and the formation of hydroperoxides, acetophenone, and oxidation products, as well as chain scission and disaggregation of the styrene units. Although phosphite/p‐hydroxybenzoate combinations appeared to reduce the formation of oxidation products, they did not show any remarkable enhancement in long‐term stabilization with respect to phenolic/phosphite antioxidants. On the other hand, strong synergistic profiles were found with the HALS. Mobility and diffusion impediments in the polymeric material appeared to play an important role in the stabilizing activity of the HALS. J. VINYL. ADDIT. TECHNOL. 12:8–13, 2006. © 2006 Society of Plastics Engineers  相似文献   

2.
Thermal oxidation process of styrene‐butadiene‐styrene (SBS) copolymer was studied by using a variety of analytical and spectroscopic methods including thermal analysis, dynamic mechanical analysis and FTIR spectroscopy. The experimental results indicate that the thermal oxidation process of SBS is a free radical self‐catalyzed reaction containing four steps (initiation, growth, transfer, and termination of the chain) with both crosslinking and scission and the latter is confirmed to be the main process. The antioxidants 1010 as scavenger of free radicals and 168 acting decomposition of hydroperoxides were used to improve the oxidation aging resistance of SBS copolymer. It has been found that synergic effect of 1010 and 168 may be the best in practice and 0.2 wt % 1010 + 0.4 wt % 168 can effectively prevent SBS from the thermal oxidation at certain temperature. Furthermore, the aging resistance of the SBS‐modified asphalt was improved by addition of complex antioxidants. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

3.
Styrene‐b‐(ethylene‐co‐butylene)‐b‐styrene (SEBS) and styrene‐b‐(ethylene‐co‐propylene) (SEP, SEPSEP) block copolymers with different styrene contents and different numbers of blocks in the copolymer chain were functionalized by melt radical grafting with glycidyl methacrylate (GMA) and employed as compatibilizers for PET‐based blends. Binary blends of PET with both functionalized (SEBS‐g‐GMA, SEP‐g‐GMA, SEPSEP‐g‐GMA) and neat (SEBS, SEP, SEPSEP) copolymers (75 : 25 w/w) and ternary blends of PET and PP (75 : 25 w/w) with various amounts (2.5–10 phr) of both modified and unmodified copolymers were prepared in an internal mixer, and their properties were evaluated by SEM, DSC, melt viscosimetry, and tensile and impact tests. The roles of the chemical structure, grafting degree, and concentration of the various copolymers on blend compatibilization was investigated. The blends with the grafted copolymers showed a neat improvement of phase dispersion and interfacial adhesion compared to the blends with nonfunctionalized copolymers. The addition of grafted copolymers resulted in a marked increase in melt viscosity, which was accounted for by the occurrence of chemical reactions between the epoxide groups of GMA and the carboxyl/hydroxyl end groups of PET during melt mixing. Blends with SEPSEP‐g‐GMA and SEBS‐g‐GMA, at concentrations of 5–10 phr, showed a higher compatibilizing effect with enhanced elongation at break and impact resistance. The effectiveness of GMA‐functionalized SEBS was then compared to that of maleic anhydride–grafted SEBS. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 2201–2211, 2005  相似文献   

4.
Ternary composites of high‐impact polystyrene (HIPS), elastomer, and magnesium hydroxide filler encapsulated by polystyrene were prepared to study the relationships between their structure and mechanical properties. Two kinds of morphology were formed. Separation of elastomer and filler was found when a nonpolar poly[styrene‐b‐(ethylene‐co‐butylene)‐b‐styrene] triblock copolymer (SEBS) was incorporated. Encapsulation of filler by elastomer was achieved by using the corresponding maleinated SEBS (SEBS‐g‐MA). The mechanical properties of ternary composites were strongly dependent on microstructure. In this study, the composites with separate dispersion structure showed higher elongation, modulus and impact strength than those of encapsulation structure. Impact‐fracture surface observation showed that the toughening mechanism was mainly due to the massive cavitation and extensive matrix yielding. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102:5184–5190, 2006  相似文献   

5.
This article investigates the effects of electron beam (EB) radiation on poly(D ,L ‐lactic acid)‐b‐poly (ethylene glycol) copolymer (PLA‐b‐PEG‐b‐PLA). The copolymer films were EB irradiated at doses from 0 to 100 kGy. The degradation of these films was studied by measuring the changes in their molecular weight, mechanical and thermal properties. The dominant effect of EB radiation on PLA‐b‐PEG‐b‐PLA is chain‐scission. With increasing irradiation dose, recombination reactions or partial crosslinking may occur in addition to chain scission. The degree of chain scission Gs and crosslinking Gx of sample are calculated to be 0.213 and 0.043, respectively. A linear relationship is also established between the decreases in molecular weight with increasing irradiation dose. Elongation at break of the irradiated sample decreases significantly, whereas its tensile strength decreases slightly. The glass transition temperature (Tg) is basically invariant as a function of irradiation dose. Thermogravimetric analysis shows that its thermal stability decreases with increasing dose. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

6.
The oxidation behavior of cis-1,4-polyisoprene, emulsion polyisoprene, emulsion isoprene/styrene copolymers, and emulsion butadiene/styrene copolymers by heat aging or ultraviolet irradiation has been investigated from the change of gel fraction and molecular weight distribution. It was determined that the oxidation behavior of both isoprene and butadiene polymers is strongly dependent on the composition of the polymers as well as on the microstructure of the polymers. In the case of oxidation by heat aging, the probability ratio of chain scission to crosslinking of both isoprene and butadiene copolymers increases gradually with increasing styrene fraction. In the case of oxidation by ultraviolet irradiation, isoprene copolymers show a remarkable increase in the probability ratio of chain scission to crosslinking, whereas butadiene copolymers show substantially no change with increase in styrene fraction. It was also demonstrated that both isoprene and butadiene polymers show a greater tendency for crosslinking with oxidation by ultraviolet irradiation than with oxidation by heat aging.  相似文献   

7.
In this work, ternary polymer blends based on (polyamide 6)/(poly[styrene‐co‐acrylonitrile])/(poly[styrene‐b‐{ethylene‐co‐butylene}‐b‐styrene]) (SEBS) triblock copolymer and a varying concentration of the reactive (maleic anhydride)‐grafted SEBS were prepared by using a melt‐blending process. The effects of the material parameters (composition of ternary blends and SEBS/[{maleic anhydride}‐grafted SEBS] concentration ratio) and blending sequence on the morphological and mechanical properties of ternary blends were studied. Taguchi experimental design methodology was employed to design the experiments and select the material and processing parameters for the optimized mechanical properties. Tensile properties (Young's modulus and yield stress) and impact strength were considered as the response variables. It was demonstrated that there is a meaningful relationship between the composition of blends, processing parameters, observed phase structure, and obtained mechanical properties. The mechanical tests showed that the highest impact strength was achieved as the dispersion of the rubbery phase achieved an optimum size of about 1 μm. J. VINYL ADDIT. TECHNOL., 23:329–337, 2017. © 2015 Society of Plastics Engineers  相似文献   

8.
In this work, five ternary blends based on 70% by weight (wt %) of polypropylene (PP) with 30% wt of polycarbonate (PC)/poly(styrene‐b‐(ethylene‐co‐butylene)‐b‐styrene)(SEBS) dispersed phase consists of 15 wt % PC and 15 wt % reactive (maleic anhydride grafted) and nonreactive SEBS mixtures at various ratios were prepared in a co‐rotating twin screw extruder. scanning electron microscopy (SEM) micrographs showed that the blends containing only nonreactive SEBS exhibited a fine dispersion of core‐shell particles. With decreasing the SEBS/SEBS‐g‐Maleic Anhydride (MAH) weight ratio, the morphology changed from the core‐shell particles to a mixed of core‐shell, rod‐like and individual particles. This variation in phase morphology affected the thermal and mechanical properties of the blends. DSC results showed that the blends containing only nonreactive SEBS exhibited a minimum in degree of crystallinity due to the homogeneous nucleation of core‐shell particles. Mechanical testing showed that in the SEBS/SEBS‐g‐MAH weight ratio of 50/50, the modulus and impact strength increased compared with the PP matrix while the yield stress had minimum difference with that of PP matrix. These effects could be attributed to the formation of those especial microstructures revealed by the SEM studies. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

9.
Compatibilizing effects of styrene/rubber block copolymers poly(styrene‐b‐butadiene‐b‐styrene) (SBS), poly(styrene‐b‐ethylene‐co‐propylene) (SEP), and two types of poly(styrene‐b‐ethylene‐co‐butylene‐b‐styrene) (SEBS), which differ in their molecular weights on morphology and selected mechanical properties of immiscible polypropylene/polystyrene (PP/PS) 70/30 blend were investigated. Three different concentrations of styrene/rubber block copolymers were used (2.5, 5, and 10 wt %). Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to examine the phase morphology of blends. The SEM analysis revealed that the size of the dispersed particles decreases as the content of the compatibilizer increases. Reduction of the dispersed particles sizes of blends compatibilized with SEP, SBS, and low‐molecular weight SEBS agrees well with the theoretical predictions based on interaction energy densities determined by the binary interaction model of Paul and Barlow. The SEM analysis confirmed improved interfacial adhesion between matrix and dispersed phase. The TEM micrographs showed that SBS, SEP, and low‐molecular weight SEBS enveloped and joined pure PS particles into complex dispersed aggregates. Bimodal particle size distribution was observed in the case of SEP and low‐molecular weight SEBS addition. Notched impact strength (ak), elongation at yield (εy), and Young's modulus (E) were measured as a function of weight percent of different types of styrene/rubber block copolymers. The ak and εy were improved whereas E gradually decreased with increasing amount of the compatibilizer. The ak was improved significantly by the addition of SEP. It was found that the compatibilizing efficiency of block copolymer used is strongly dependent on the chemical structure of rubber block, molecular weight of block copolymer molecule, and its concentration. The SEP diblock copolymer proved to be a superior compatibilizer over SBS and SEBS triblock copolymers. Low‐molecular weight SEBS appeared to be a more efficient compatibilizer in PP/PS blend than high‐molecular weight SEBS. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 291–307, 1999  相似文献   

10.
The effects of elastomer type on the morphology, flammability, and mechanical properties of high‐impact polystyrene (HIPS)/polystyrene (PS)‐encapsulated magnesium hydroxide (MH) were investigated. The ternary composites were characterized by cone calorimetry, mechanical testing, and scanning electron microscopy. Morphology was controlled with poly[styrene‐b‐(ethylene‐co‐butylene)‐b‐styrene] (SEBS) triblock copolymer or the corresponding maleinated poly[styrene‐b‐(ethylene‐co‐butylene)‐b‐styrene] (SEBS‐g‐MA). The HIPS/SEBS/PS‐encapsulated MH composites exhibited separation of the filler and elastomer, whereas the HIPS/SEBS‐g‐MA/PS‐encapsulated MH composites exhibited encapsulation of the filler by SEBS‐g‐MA. The flame‐retardant and mechanical properties of the ternary composites were strongly dependent on microstructure. The composites with an encapsulation structure showed higher flame‐retardant properties than those with a separation structure at the optimum use level of SEBS‐g‐MA. Furthermore, the composites with a separation structure showed a higher modulus and impact strength than those with an encapsulation structure. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

11.
The effect of poly[styrene‐b‐(ethylene‐co‐butylene)‐b‐styrene] (SEBS) copolymer on the thermal and dielectric properties of polypropylene (PP)—nanosilica (NS) composites in relation with morphological aspects revealed by atomic force microscopy (AFM) was investigated in this article. SEBS hindered the crystallization process of PP in PP/NS composites, leading to a smaller degree of crystallinity and lower perfection of crystalline structure. Broader lamellar thickness distribution was obtained in nanocomposites containing SEBS. Almost two times higher dielectric loss as compared to PP reference and two relaxation processes were detected in εr ′′(f) curves of nanocomposites. The first peak, in the same frequency domain as for the references, was assigned to α‐relaxation of polymer components together with interfacial polarization. The relaxation time follows the Arrhenius law with an activation energy of 80–90 kJ/mol. For the second process, the temperature dependence of the relaxation times obeyed the VFT equation. The dielectric changes following the incorporation of SEBS support its tendency to hinder the motional processes in PP, in accordance with DSC results. A smooth transition from a phase rich in SEBS to one containing mainly PP was detected in the AFM image of the composite with the larger amount of SEBS, emphasizing the good compatibility at the PP/SEBS interface. POLYM. ENG. SCI., 53:2081–2092, 2013. © 2013 Society of Plastics Engineers  相似文献   

12.
Mechanical properties of isotactic polypropylene/wollastonite/styrene rubber block copolymers (iPP/wollastonite/SRBC) composites were studied as a function of elastomeric poly(styrene‐b‐ethylene‐co‐butylene‐b‐styrene) triblock copolymer (SEBS) and SEBS grafted with maleic anhydride (SEBS‐g‐MA) content from 0 to 20 vol%. Microphase morphology was stronger influenced by SRBC elastomers than by different wollastonite types. Higher encapsulation ability of SEBS‐g‐MA than SEBS caused more expressive core‐shell morphology and consequently higher notched impact strength as well as yield parameters, but lower Young's modulus. Higher ductility of the composites with SEBS than with SEBS‐g‐MA has been primarily caused by better miscibility of the polypropylene chains with SEBS molecules. Surface properties of components and adhesion parameters also indicated that adhesion at SEBS‐g‐MA/wollastonite interface, which was stronger than the one at the SEBS/wollastonite interface, influenced higher encapsulation of wollastonite particles by SEBS‐g‐MA. POLYM. ENG. SCI., 47:1873–1880, 2007. © 2007 Society of Plastics Engineers  相似文献   

13.
Phosphorous antioxidants efficiency against molten polypropylene (PP) thermal oxidation was assessed during isothermal ageing and processing by rotational molding. During isothermal ageing, experimental data were compared to the ones calculated on the basis of a kinetic model. Phosphonite is more effective than phosphite. Both phosphite and phosphonite decompose hydroperoxide and prevent initiation of oxidation reactions. However, phosphonite hydrolysis product acts as a radical chain terminator and blocks propagation reactions. Kinetic constants of stabilization reactions were evaluated and discussed. Further, this kinetic modeling was coupled to a thermal software, able to predict polymer temperature evolution during rotational molding and the degradation critical temperature (DCT) of different stabilized PP. A DCT of 235°C was obtained for PP stabilized with phosphonite and hindered phenol against 215°C for PP stabilized with phosphite and the same phenol. This difference of 20°C, corresponding to 5 min more heating is significant to optimize rotational molding. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41285.  相似文献   

14.
This paper presents an extensive study on dye-photosensitized singlet oxygen oxidation of cis-1,4-polybutadiene, 1,2-polybutadiene, and butadiene–styrene copolymers. The singlet oxygen oxidation occurs by “ene” type mechanism which involves formation of hydroperoxide groups by addition and a shift of the double bond. The oxidation is accompanied by chain scission and crosslinking reactions.  相似文献   

15.
Multiphase triblock styrene‐b‐(ethylene‐co‐butylene)‐b‐styrene (SEBS) copolymers chemically modified with maleic anhydride (MAH) in the presence of a radical initiator by reactive extrusion were studied by solid‐state 1H‐NMR and 13C‐NMR. In the experiments performed, the concentrations of MAH and initiator were kept constant, whereas the temperature profile in the extruder was varied. Samples with known extents of grafting and crosslinking were analyzed with NMR with techniques based on proton spin diffusion to investigate the microphase structure of the modified copolymers. The 13C‐NMR results show that the size of the rigid domains was about 15 nm and was not significantly changed by the modification. Alterations in the rubbery phase were illustrated by measured changes in proton spin‐spin (T2) relaxation times. The fraction of protons having intermediate mobilities increased slightly in modified SEBS with respect to that observed in unmodified copolymers. These results were found to be independent of the extruder temperature profiles used, at least in the range studied. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

16.
Eighty/twenty polypropylene (PP)/styrene–ethylene–butylene–styrene (SEBS) and 80/20 PP/maleated styrene–ethylene–butylene–styrene (SEBS‐g‐MA) blends reinforced with 30 wt % short glass fibers (SGFs) were prepared by extrusion and subsequent injection molding. The influence of the maleic anhydride (MA) functional group grafted to SEBS on the properties of SGF/SEBS/PP hybrid composites was studied. Tensile and impact tests showed that the SEBS‐g‐MA copolymer improved the yield strength and impact toughness of the hybrid composites. Extensive plastic deformation occurred at the matrix interface layer next to the fibers of the SGF/SEBS‐g‐MA/PP composites during impact testing. This was attributed to the MA functional group, which enhanced the adhesion between SEBS and SGF. Differential scanning calorimetry measurements indicated that SEBS promoted the crystallization of PP spherulites by acting as active nucleation sites. However, the MA functional group grafted to SEBS retarded the crystallization of PP. Finally, polarized optical microscopy observations confirmed the absence of transcrystallinity at the glass‐fiber surfaces of both SGF/SEBS/PP and SGF/SEBS‐g‐MA/PP hybrid composites. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 1303–1311, 2002  相似文献   

17.
The copolymer of styrene–ethylene–butylene–styrene triblock copolymer‐g‐polylactic acid (SEBS‐g‐PLA) was successfully prepared using a novel solvothermal synthetic method, in which the graft copolymerization of PLA and SEBS was simply performed in cholorform solution at 100–150°C with benzoyl peroxide (BPO) as initiator. The effect of various factors including the reaction temperature and time and the content of BPO and PLA on the graft copolymerization was investigated in detail. It is found that the optimal reaction condition for the grafted copolymers SEBS‐g‐PLA was 120°C for 5 h, while the optimal formulation of SEBS/PLA/BPO was 5 g/2 g/0.5 g in 30 mL chloroform. The properties and microstructures of the obtained SEBS‐g‐PLA copolymers were also studied. The tensile strength and elongation at break were higher than that of pure SEBS and improved with the increase of grafting degree. In addition, SEBS‐g‐PLA copolymer possessed two‐phase structure with vague phase boundaries. The as‐prepared SEBS‐g‐PLA copolymers can be used as the toughening component to improve the impact strength of PLA. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

18.
Supermolecular structure of isotactic polypropylene/wollastonite/styrenic rubber block copolymers composites were studied as a function of elastomeric poly‐ (styrene‐b‐ethylene‐co‐butylene‐b‐styrene) triblock copolymer (SEBS) and the SEBS grafted with maleic anhydride (SEBS‐g‐MA) content (from 0 to 20 vol%) by optical, scanning, and transmission electron microscopy, wide‐angle X‐ray diffraction and differential scanning calorimetry. Wollastonite particles disturbed the spherulitization of polypropylene matrix. Both elastomers affected the crystallization of polypropylene matrix mainly by solidification effect. Although SEBS‐g‐MA encapsulated wollastonite particles more expressive than SEBS forming thus core‐shell morphology in higher extent, scanning electron micrographs indicated more constrained wollastonite particles in fractured surfaces of composites with SEBS elastomer. Moreover, SEBS‐g‐MA disorientated wollastonite particles and affected reorientation of the polypropylene crystallites stronger than SEBS elastomer. POLYM. ENG. SCI., 47:2145–2154, 2007. © 2007 Society of Plastics Engineers  相似文献   

19.
Short‐glass‐fiber (SGF)‐reinforced polypropylene (PP) composites toughened with a styrene/ethylene butylene/styrene (SEBS) triblock copolymer were injection molded after extrusion. Furthermore, a maleic anhydride (MA)‐grafted SEBS copolymer (SEBS‐g‐MA) was used as an impact modifier and compatibilizer. The effects of the processing conditions and compatibilizer on the microstructure and tensile and impact performance of the hybrid composites were investigated. In the route 1 fabrication process, SGF, PP, and SEBS were blended in an extruder twice, and this was followed by injection molding. In route 2, or the sequential blending process, the elastomer and PP were mixed thoroughly before the addition of SGF. In other words, either PP and SEBS or PP and SEBS‐g‐MA pellets were premixed in an extruder. The produced pellets were then blended with SGF in the extruder, and this was followed by injection molding. The SGF/SEBS‐g‐MA/PP hybrid fabricated by the route 2 process exhibited the highest modulus, yield stress, tensile stress at break, Izod impact energy, and Charpy drop weight impact strength among the composites investigated. This was due to the formation of a homogeneous SEBS elastomeric interlayer at the SGF and matrix interface of the SGF/SEBS‐g‐MA/PP hybrid. This SEBS rubbery layer enhanced the interfacial bonding between SGF and the matrix of the SGF/SEBS‐g‐MA/PP hybrid. The correlations between the processing, microstructure, and properties of the hybrids were investigated. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1384–1392, 2003  相似文献   

20.
Nanocomposites based on poly(styrene‐b‐ethylene‐ran‐butylene‐b‐styrene) (SEBS) and carbon nanotubes (CNTs) (SEBS/CNT) as well as SEBS grafted with maleic anhydride (SEBS‐MA)/CNT were successfully prepared for electromagnetic shielding applications. Both SEBS/CNT and SEBS‐MA/CNT nanocomposites were prepared by melt compounding and were post‐processed using two different techniques: tape extrusion and compression moulding. The different nanocomposites were characterized by Raman spectroscopy and rheological analysis. Their mechanical properties, electrical properties (10-2–105 Hz) and electromagnetic shielding effectiveness (8.2–12.4 GHz) were also evaluated. The results showed that the CNT loading amount, the presence of MA in the matrix and the shaping technique used strongly influence the final morphologies and properties of the nanocomposites. Whilst the nanocomposite containing 8 wt% CNTs prepared by compression moulding presented the highest electromagnetic shielding effectiveness (with a value of 56.73 dB, which corresponds to an attenuation of 99.9996% of the incident radiation), the nanocomposite containing 5 wt% CNTs prepared by tape extrusion presented the best balance between electromagnetic and mechanical properties and was a good candidate to be used as an efficient flexible electromagnetic interference shielding material. © 2018 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号