首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thin films of Ta2O5, Nb2O5, and HfO2 were deposited by reactive-low-voltage-ion-plating (RLVIP) on unheated glass and silicon substrates. The film thickness was about 200 nm. Optical properties as well as mechanical film stress of these layers were investigated in dependence of various deposition parameters, i.e. arc current and oxygen partial pressure. For an arc current in the range between 40 and 50 A and an oxygen partial pressure of at least 11 · 10− 4 mbar good results were obtained. The refractive index and film thickness were calculated from spectrophotometric transmission data using the Swanepoel theory. For example at 550 nm wavelength the refractive index for thin RLVIP-Nb2O5-films was found to be n550 = 2.40. The optical absorption was obtained by photo-thermal deflection spectrometry. For the investigated materials absorption coefficients in the range of k = 5 · 10− 4 at 515 nm wavelength were measured. The mechanical film stress was determined by measuring the difference in bending of silicon substrates before and after the deposition process. For dense films, i.e. no water vapour sorption on atmosphere, the mechanical film stress was always compressive with values of some hundred MPa. In case of films deposited with higher arc currents (Iarc > 60A) and lower oxygen pressure (< 15 · 10− 4 mbar) the influence of a post deposition heat treatment at 350 °C for 4 h on air was also investigated. For these films the properties could clearly be improved by such treatment. However, by using lower arc currents and higher oxygen partial pressure during the ion plating process, immediately dense and environmental stable films with good optical as well as mechanical properties could be achieved without post deposition heat treatment. All the results obtained will be presented in graphs and diagrams.  相似文献   

2.
Ta2O5 films were deposited onto unheated fused silica substrates (Suprasil®) by reactive low voltage ion plating (RLVIP). From these films of about 200 nm thickness the optical properties (refractive index n and the absorption coefficient k) and also the mechanical properties (density ρ and intrinsic stress σ) were investigated in dependence of the working gas pressure (Ar) and the reactive gas pressure (O2). The experiments show a reasonable correlation between refractive index, density and intrinsic stress of the films. With low total pressure high refractive indices (up to n550=2.25), high compressive film stress and high relative film density were found. However the film density, the refractive index and also the intrinsic stress decreased with films prepared under raising total gas pressure. The optical absorption depends on the amount of oxygen in the gas phase during deposition. By adding more oxygen to the Ar/O2 gas mixture primarily the absorption could clearly be decreased.  相似文献   

3.
Optical thin films have to fulfil high quality requirements, which can be achieved for example by reactive low voltage ion plating (RLVIP). But especially for applications in precision optics, additional treatments are necessary to reduce residual optical absorption and compressive stress arising in the coatings, and to enhance the stability of the coatings – specifically for laser applications. In practice, post deposition heat treatment and backside coatings are mostly used to overcome these problems. In order to provide alternative methods to handle the disadvantages of the RLVIP‐process, the idea was to replace the mentioned steps by a laser treatment. This means that a laser beam is directed onto the sample after deposition or even during the coating process. In this study, the influence of a high power CO2‐laser beam on thin Nb2O5‐ and HfO2‐films was investigated. The effects on the refractive index and the film thickness are presented for different energy densities of a TEA‐CO2‐laser beam (10.59μm). For Nb2O5‐films a thickness increase up to 12.2nm (6.4 %) and a refractive index decrease of 0.074 (3.1 %) were found. In case of HfO2 the values were 2.3nm (1.2 %) in thickness and 0.007 (0.3 %) in refractive index. From the observed changes also distinct impacts on the film stress can be expected. One intention of this research was also to call attention to an alternative technique for enhancement of thin film properties.  相似文献   

4.
AgInS2 films were pulse electrodeposited on tin oxide coated glass substrates at different duty cycles for the first time. The films were single phase with orthorhombic structure. Optical absorption measurements indicated a band gap in the range of 1.90–2.02 eV with decrease of duty cycle. Transmission spectra exhibited interference fringes. Using the envelope method, refractive index was calculated. Optical conductivity was evaluated from the absorption coefficient and refractive index data. Optical data was analyzed by the single-effective oscillator model.  相似文献   

5.
The optical properties of thin SiO2-TiO2 sol-gel composite films were investigated using exact optical models and the Forouhi-Bloomer model, (Phys. Rev. B34, 7018 (1986)), which describes the optical dispersion of amorphous dielectrics. Films deposited on glass and silicon substrates, were characterized by optical transmission and reflection measurements. Theoretical spectra have been generated and fitted to the experimental ones via standard regression analysis techniques. The (five) adjustable Forouhi-Bloomer parameters describing the dispersion of the complex refractive index, as well as the film thickness were determined. The refractive index and absorption coefficient of the films were found to depend on the molar contents of the component oxides.  相似文献   

6.
Besides classical multilayer systems with alternating low and high refractive indices, reactive pulse magnetron sputtering processes offer various possibilities of depositing gradient films with continuously varying refractive index. Using nanoscale film growth control it is possible to achieve optical filter systems with a defined dependency of refractive index on film thickness, e.g. by sputtering a silicon target in a time variant mixture of oxygen and nitrogen. Also reactive co-sputtering of different target materials such as silicon and tantalum in oxygen is suitable as well. Rugate filters made from SiOxNy or SixTayOz gradient refractive index profiles find their application in spectroscopy, laser optics and solar concentrator systems.Furthermore polymer substrates are increasingly relevant for the application of optical coatings due to their mechanical and economical advantages. Magnetron PECVD (magPECVD) using HMDSO as precursor allows to deposit carbon containing films with polymer-like properties. Results show the suitability of these coatings as hard coatings or matching layers. Multifunctional coatings with antireflective and scratch-resistant properties were deposited on polymer substrates using a combined magPECVD and sputter deposition process.  相似文献   

7.
SnSe films were pulse electrodeposited on tin oxide coated glass substrates at different duty cycles. The films were single phase with orthorhombic structure. Optical absorption measurements indicated a band gap in the range of 1.28–1.50 eV with decrease of duty cycle. Transmission spectra exhibited interference fringes. Using the envelope method, refractive index was calculated. From the refractive index and extinction coefficient data, real and imaginary part of dielectric constant were estimated. Optical conductivity was evaluated from the absorption coefficient and refractive index data. Optical data were analysed by the single-effective oscillator model.  相似文献   

8.
The focus of the present work is the study of carbon co-deposition effect on the optical and mechanical properties of zirconia films. Optical and dielectric constant, band gap and transition lifetime of such composite systems were determined, as well as their elasticity properties. The thin ZrO2−x-C films were sputter-deposited on silicon and polycarbonate, from a pure ZrO2 and graphite targets in a radio-frequency argon plasma.Besides the zirconia phase and crystalline parameter changes induced by carbon addition, the electronic properties to the films were significantly modified: a drastical optical gap lowering was observed along an increased electronic dielectric constant and refractive index. The invariance of the film elasticity modulus and the similarity of the optical transition lifetime values with those of pure amorphous carbon films indicate an immiscibility of the ceramic and carbon components of the film structure.  相似文献   

9.
W.T. Tang  Z.G. Hu  J. Sun  J.D. Wu 《Thin solid films》2010,518(19):5442-5446
A plasma assisted reactive pulsed laser deposition process was demonstrated for low-temperature deposition of thin hafnia (HfO2) and zirconia (ZrO2) films from metallic hafnium or zirconium with assistance of an oxygen plasma generated by electron cyclotron resonance microwave discharge. The structure and the interface of the deposited films on silicon were characterized by means of Fourier transform infrared spectroscopy, which reveals the monoclinic phases of HfO2 and ZrO2 in the films with no interfacial SiOx layer between the oxide film and the Si substrate. The optical properties of the deposited films were investigated by measuring the refractive indexes and extinction coefficients with the aid of spectroscopic ellipsometry technique. The films deposited on fused silica plates show excellent transparency from the ultraviolet to near infrared with sharp ultraviolet absorption edges corresponding to direct band gap.  相似文献   

10.
Reactive Low Voltage Ion Plating (RLVIP) is a process for production of chemical compound films mainly by direct synthesis from the elements. It can be used for deposition of single layer and multilayer oxide coatings onto unheated glass and other unheated substrates. An introduction to the RLVIP process will be given, together with some relevant plasma process data and optical and mechanical film properties of Ta2O5 films and Ta2O5/SiO2 multilayers. The process plasma was analysed by plasma monitoring (PPM421), a Langmuir probe system (Smartprobe) and a Faraday Cup System (MIEDA). A correlation between plasma data and optical/mechanical properties will be shown.  相似文献   

11.
Mixed composition thin films of zinc sulphide-thorium fluoride have been deposited on glass and silicon substrates by thermal evaporation of mixtures of these materials in different proportions, from a single resistively heated source. The films are characterized for their optical properties (refractive index and extinction coefficient), mechanical properties (intrinsic stress), surface morphology and chemical composition. It is found that these films have tailorable refractive indices and low losses, and that films with certain compositions have low intrinsic stress and smooth surface morphology, making them suitable for incorporation in thin film multilayers for use in the near infrared region up to at least 10μm.  相似文献   

12.
In this work, amorphous silicon oxynitride films were deposited on silicon substrates by plasma-enhanced chemical vapor deposition (PECVD). The main purpose was to use silicon oxynitride film as a single-layer anti-reflection coating for Si-based optoelectronic devices. The chemical information was measured by infrared spectroscopy. Surface and cross-section morphology was determined by a scanning electron microscope. Spectroscopic ellipsometry (SE) was applied to measure the refractive index, extinction coefficient and thickness. The results of SE presented the refractive indices varied in the range of 1.83-1.92 by altering SiH4/NH3 ratio. One-side polished silicon substrate coated with silicon oxynitride film exhibited low reflectance, and two-side polished silicon substrate coated with silicon oxynitride film exhibited high transmittance. The results suggested that silicon oxynitride film was a very attractive single-layer anti-reflection coating.  相似文献   

13.
The Reactive Low Voltage Ion Plating Process (RLVIP) is a special PVD process, enhanced with energetic ions due to an additional low voltage high current plasma source. With the RLVIP process it is possible to deposit metallic films and also chemical compound films such as metal oxides, -nitrides or -oxynitrides in reactive processes. The films are very dense and show a high adherence. The physical properties of the process and the plasma, responsible for the quality and properties of the films, are not simply measurable. The film forming ions, their energy distribution, the total ion current density and the efficient ionisation mechanism of the black box plasma are investigated in this work. The correlation between the film properties: refractive film index, intrinsic stress, film density and the measured plasma data is shown and discussed.  相似文献   

14.
X-ray reflective measurements (XRR), atomic force microscopy and single wavelength ellipsometry were used to investigate the optical properties of thin l-leucine films deposited onto silicon substrates. The ellipsometry data (Ψ,Δ) were fitted with a four-layer-model, and the optical refractive index of the l-leucine film measured with ellipsometry was determined to be 1.37. With the conventional effective medium approximation theory and the ellipsometry results, the density of the l-leucine nanofilm was determined to be 70% (0.81 g/cm3) of crystalline l-leucine. This value was in good agreement with the density of 69% (0.80 g/cm3) obtained with XRR measurement. The ellipsometry measurements also enabled us to estimate the surface roughness or absorption layer of the film. This procedure of combined XRR and ellipsometry measurements could be a powerful tool for the determination of the (otherwise hard-to-determine) refractive index in thin organic material films with a rough surface layer.  相似文献   

15.
Optical and structural properties of LaF3 thin films   总被引:1,自引:0,他引:1  
LaF(3) thin films of different thicknesses were deposited on CaF(2) (111) and silicon substrates at a relatively low substrate temperature of 150 degrees C. Optical (transmittance, reflectance, refractive index, and extinction coefficient) and mechanical (morphology and crystalline structure) properties have been investigated and are discussed. It is shown that LaF(3) thin films deposited on CaF(2) (111) substrates are monocrystalline and have a bulklike dense structure. Furthermore, it is presented that low-loss LaF(3) thin films can be deposited not only by boat evaporation but also by electron beam evaporation.  相似文献   

16.
Transparent conductive oxides (TCO) are widely used materials for multifarious applications. According to today's state of knowledge, indium‐tin‐oxide (ITO) still offers the best electrical properties among numerous TCOs. However, ITO films produced by ion plating have only rarely been reported to be investigated. For most coating processes, ITO films need to be deposited under high temperature conditions (some 100 °C substrate heating) or require post‐deposition heat treatment in order to obtain high film quality. In this study, reactive low‐voltage ion plating (RLVIP) was used, which allows ‐ due to plasma assistance during the coating process ‐ deposition of ITO films at temperatures below 100 °C. Essential film properties, i.e. resistivity and optical transmission, were optimised by variation of arc current, gas pressure and deposition rate. These quantities ‐ particularly arc current and gas pressure ‐ have huge influence on the characteristics of the supporting plasma. This was shown by analysing the plasma with a mass‐spectrometric plasma monitoring system and with a Langmuir probe. In comparison with formerly studied coating materials (Ta2O5,Nb2O5,HfO2), different plasma compositions regarding the presence of metal oxide ions were determined, which could be attributed to elemental and molecular energy properties (ionisation and binding energies).  相似文献   

17.
Multilayers of zinc blend SnS crystalline thin film have been deposited onto glass substrates by a chemical bath deposition (CBD) method. The envelope method, based on the optical transmission spectrum taken at normal incidence, has been successfully applied to determine the layer thickness and to characterize optical properties of thin films having low surface roughness. Optical constants such as refractive index n, extinction coefficient k, as well as the real (??r) and imaginary (??i) parts of the dielectric constant were determined from transmittance spectrum using this method. Obtained low value of the extinction coefficient in the transparency domain is a good indication of film surface smoothness and homogeneity. To perform the heterojunction structure based on SnS absorber material, cubic In2S3:Al was deposited on SnO2:F/glass as window layer using CBD with different aluminum content. Optical properties of these films were evaluated.  相似文献   

18.
High-k gate dielectric HfO2 thin films have been deposited on Si and quartz substrate by radio frequency magnetron sputtering. The structural and optical properties of HfO2 thin films related to deposition power are investigated by X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), ultraviolet–visible spectroscopy (UV–Vis), and spectroscopic ellipsometry (SE). Results confirmed by XRD have shown that the as-deposited HfO2 thin films are not amorphous state but in monoclinic phase, regardless of deposition power. Analysis from FTIR indicates that an interfacial layer has been formed between the Si substrate and the HfO2 thin film during deposition. AFM measurements illustrate that the root mean square (RMS) of the as-deposited HfO2 thin films’ surface demonstrates an apparent reduction with the increase of deposition. Combined with UV–Vis and SE measurements, it can be noted reduction in band gap with an increase in power has been observed. Additionally, increase in refractive index (n) has been confirmed by SE.  相似文献   

19.
Silicon carbide (SiC) thin films were deposited using hot wire chemical vapor deposition technique from silane (SiH4) and methane (CH4) gas precursors. The effect of deposition pressure on structural and optical properties of SiC films was investigated. Various spectroscopic methods including Fourier transform infrared spectroscopy, Raman scattering spectroscopy, Auger electron spectroscopy, and UV–Vis–NIR spectroscopy were used to study these properties. Films deposited at low deposition pressure were Si-rich, and were embedded with nano-crystals of silicon. These films showed strong absorption in the visible region and had low energy band gaps. Near stoichiometric SiC film, were formed at intermediate deposition pressure and these films were transparent in the visible region and exhibited a wide optical band gap. High deposition pressures caused inhomogeneity in the film as reflected by the increase in disorder parameter and low refractive index of the films. This was shown to be due to formation of sp 2 carbon clusters in the film structure.  相似文献   

20.
《Vacuum》2012,86(4):422-428
Composite thin films of HfO2:SiO2 with wide range of relative composition from 100:0 (pure HfO2) to 10:90 have been deposited on fused silica substrates by co-evaporation technique and the optical properties of the films have been studied by measuring the transmission spectra of the samples by spectrophotometer. Different important optical parameters viz., band gap, refractive index and absorption coefficients of the samples have been obtained by fitting the measured optical spectra with theoretically generated spectra and the variation of the optical constants as a function of SiO2 content in the films have been obtained. Two different dispersion models viz., the single effective oscillator model and the Tauc–Lorentz model have been used to generate the theoretical spectra in the above fitting procedure. X-ray reflectivity (XRR) measurement technique has been used to find the densities of the films in order to explain the observed variation in optical properties of the films with increase in SiO2 content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号