首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
J. K. Kaldellis 《风能》2003,6(4):355-364
Autonomous wind power systems are among the most interesting and environmentally friendly technological solutions for the electrification of remote consumers. However, the expected system operational cost is quite high, especially if the no‐load rejection restriction is applied. This article describes an integrated feasibility analysis of a stand‐alone wind power system, considering, beyond the total long‐term operational cost of the system, the no‐energy fulfilment (or the alternative energy coverage) cost of the installation. Therefore the impact of desired system reliability on the stand‐alone system configuration is included. Accordingly, a detailed parametric investigation is carried out concerning the influence of the hourly no‐energy fulfilment cost on the system dimensions and operational cost. Thus, by using the proposed method, one has the capability–in all practical cases–to determine the optimum wind power system configuration that minimizes the long‐term total cost of the installation, considering also the influence of the local economy basic parameters. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

2.
Wind power and photovoltaic driven stand-alone systems have turned into one of the most promising ways to handle the electrification requirements of numerous isolated consumers worldwide. In this context, the primary target of the present work is to estimate the appropriate dimensions of either a wind power or a photovoltaic stand-alone system that guarantees the energy autonomy of several typical remote consumers located in representative Greek territories. For all regions examined, long-term wind speed and solar radiation measurements as well as formal meteorological data are utilized. Accordingly, special emphasis is put on the detailed energy balance analysis of the proposed systems on an hourly basis, including also the battery bank depth of discharge time evolution. Finally, comparison is made between the wind and the solar based systems investigated, proving that in most Greek regions either a wind or photovoltaic driven stand-alone system is able to cover the electrification needs of remote consumers, at a moderate first installation cost, without any additional energy input.  相似文献   

3.
In this paper, a new approach for optimally sizing the storage system employing the battery banks for the suppression of the output power fluctuations generated in the hybrid photovoltaic/wind hybrid energy system. At first, a novel multiple averaging technique has been used to find the smoothing power that has to be supplied by the batteries for the different levels of smoothing of output power. Then the battery energy storage system is optimally sized using particle swarm optimization according to the level of smoothing power requirement, with the constraints of maintaining the battery state of charge and keeping the energy loss within the acceptable limits. Two different case studies have been presented for different locations and different sizes of the hybrid systems in this work. The results of the simulation studies and detailed discussions are presented at the end to portrait the effectiveness of the proposed method for sizing of the battery energy storage system. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
The wind power industry is nowadays a mature energy production sector disposing to market commercial wind converters from 50 W up to 5 MW. In the present work the possibility of using stand‐alone electricity production systems based on a small wind turbine in order to meet the electricity requirements of remote consumers is analysed for selected Aegean Sea regions possessing representative wind potential types. The proposed configuration results from an extensive long‐term meteorological data analysis on a no‐load rejection condition basis during the entire time period examined. Accordingly, an integrated energy balance analysis is carried out for the whole time period investigated, including also the system battery depth‐of‐discharge distribution versus time. Finally, the predicted optimum system configuration is compared to other existing technoeconomic alternatives on a simplified total production cost basis. The results support the viability of similar solutions, especially for areas of high or medium wind potential. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

5.
More than one third of world population has no direct access to interconnected electrical networks. Hence, the electrification solution usually considered is based on expensive, though often unreliable, stand-alone systems, mainly small diesel-electric generators. Hybrid wind–diesel power systems are among the most interesting and environmental friendly technological alternatives for the electrification of remote consumers, presenting also increased reliability. More precisely, a hybrid wind–diesel installation, based on an appropriate combination of a small diesel-electric generator and a micro-wind converter, offsets the significant capital cost of the wind turbine and the high operational cost of the diesel-electric generator. In this context, the present study concentrates on a detailed energy production cost analysis in order to estimate the optimum configuration of a wind–diesel-battery stand-alone system used to guarantee the energy autonomy of a typical remote consumer. Accordingly, the influence of the governing parameters—such as wind potential, capital cost, oil price, battery price and first installation cost—on the corresponding electricity production cost is investigated using the developed model. Taking into account the results obtained, hybrid wind–diesel systems may be the most cost-effective electrification solution for numerous isolated consumers located in suitable (average wind speed higher than 6.0 m/s) wind potential regions.  相似文献   

6.
In this paper, an adaptive dispatch strategy is presented to maximize the revenue for grid‐tied wind power plant coupled with a battery energy storage system (BESS). The proposed idea is mainly based on time‐varying market‐price thresholds, which are varied according to the proposed algorithm in an adaptive manner. The variable nature of wind power and market price signals leads to the idea of storing energy at low price periods and consequently selling it at high prices. In fact, the wind farm operators can take advantage of the price variability to earn additional income and to maximize the operational profit based on the choice of best price thresholds at each instant of time. This research study proposes an efficient strategy for intermittent power dispatch along with the optimal operation of a BESS in the presence of physical limits and constraints. The strategy is tested and validated with different BESSs, and the percentage improvement of income is calculated. The simulation results, based on actual wind farm and market‐price data, depict the proficiency of the proposed methodology over standard linear programming methods.  相似文献   

7.
Wind power plant operators are often faced with extra charges when their power production does not match the forecasted power. Because the accuracy of wind power forecasts is limited, the use of energy storage systems is an attractive alternative even when large‐scale aggregation of wind power is considered. In this paper, the economic feasibility of lithium‐ion batteries for balancing the wind power forecast error is analysed. In order to perform a reliable assessment, an ageing model of lithium‐ion battery was developed considering both cycling and calendar life. The economic analysis considers two different energy management strategies for the storage systems and it is performed for the Danish market. Analyses have shown that the price of the Li‐ion BESS needs to decrease by 6.7 times in order to obtain a positive net present value considering the present prices on the Danish energy market. Moreover, it was found that for total elimination of the wind power forecast error, it is required to have a 25‐MWh Li‐ion battery energy storage system for the considered 2 MW WT. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
A modular system for the supply of remote electrical consumers was developed, which makes possible a variable integration of wind energy and photovoltaic plants in connection with a diesel engine and a battery storage. The wind energy converters, equipped with asynchronous generators, and a fast pitch control, work parallel with a synchronous generator. The generator is driven by a diesel engine by means of an overrunning clutch, or started by a small DC-motor. If the diesel is off, or the starting process by the DC-motor is finished, the synchronous generator works as a rotating phase-shifter and takes over voltage control and supply of reactive power.

The speed versus power control of the wind energy converters does not only make possible an optimized parallel operation with the diesel-generator unit, but also directly takes over frequency control when operated singly without diesel engine. The location of the wind energy plants does not depend on the site of the diesel engine, because control cables are not necessary. To avoid too frequent starting of the diesel, a storage battery is installed. The report describes the electrical and control technical design on principle, as well as the experience with the following, already built plants:

-Coupling of two wind energy plants for the supply of water irrigation pumps.

-Combination of two WECs with a short-time battery storage and a diesel-set.

-Combination of two WECs with a photovoltaic generator and a battery storage.  相似文献   

9.
In general, the commercialized medium‐sized asynchronous wind turbines are fully automated facilities designed to operate in parallel connection to the grid; in case of isolated operation, they need to be combined with diesel generator. This paper aims at studying the method of producing electricity of maximal quality with the wind, by constructing a new stand‐alone hybrid (medium‐sized asynchronous wind turbines, UPS with battery, and photovoltaic array) power system without diesel generator. This paper proposes a new architecture of stand‐alone hybrid power system that consists of medium‐sized asynchronous wind turbine, UPS, current limiter (reactor), photovoltaic array, and consumer and dump loads; accordingly, a supervisory control and data acquisition (SCADA) for this system is suggested along with the operation strategies depending on the output power of the UPS and wind turbine, consumer load, and the battery voltage of UPS. The case study was confirmed through the simulation results of the operation of a new stand‐alone hybrid (two 110 kW of asynchronous wind turbines, 250 kVA of UPS with battery, reactor, 36 kW of photovoltaic array, and consumer and dump loads) power system. The results of the simulation showed that the system frequency change of the new stand‐alone hybrid power system was 60 ± 0.5 Hz, and the one of the wind + diesel stand‐alone hybrid system was 60 ± 1 Hz, for the sudden change of consumer load and gust. This new system can be eligible as a standardizing option for the architecture of nondiesel stand‐alone hybrid system and its SCADA system.  相似文献   

10.
独立式风光互补发电系统中最大功率控制策略研究   总被引:1,自引:0,他引:1  
独立风光互补发电系统从能量的角度来看可以分为3部分,即能量获取部分,能量存储部分以及能量消耗部分。主要介绍了能量获取所涉及的风力机最大功率运行和光伏电池最大功率跟踪这2个问题的控制策略,同时对能量存储部分所涉及的蓄电池充放电的控制策略进行了介绍,其中对充电策略的三阶段法做了比较详细的分析。最后对最大功率控制策略的研究方法作了系统的评述并对该领域今后的研究方向作了展望。  相似文献   

11.
电池储能系统(battery energy storage system,BESS)在风储联合应用中具有多种功能,利用电池储能系统提高风电并网调度运行能力是当前研究的热点之一.文章基于我国北方某风电场历史运行数据与预测数据,依据预测误差评价指标和风电场预报考核指标的综合评价方法对风电场预测数据进行分析研究,归纳了预测误差的概率分布特征;提出利用电池储能系统提高风电跟踪计划出力能力,统计并量化出电池储能系统用于跟踪计划出力场合的作用范围;通过仿真验证电池储能系统在风储联合系统中提高风电跟踪计划出力控制策略的有效性和可行性.  相似文献   

12.
《Applied Energy》2006,83(2):113-132
Official statistics estimate that almost two billion people worldwide have no direct access to electrical networks. Afar from decision centers and having limited political influence, isolated consumers are often abandoned, facing a dramatically insufficient infrastructure situation. In this context, a wind–diesel–battery hybrid system is one of the best alternative solutions to meet the electricity demand of numerous remote consumers, with rational first installation and operational cost, even at medium wind-potential areas. The basic idea of this effort, in comparison with previous works rejecting oil usage, is to use the minimum possible diesel-oil quantity and limit the battery bank dimensions. For the prediction of the optimum hybrid system configuration, an integrated numerical algorithm is developed, based on experimental measurements and operational characteristics by the hybrid system components manufacturers. During the calculations, a detailed energy-balance analysis is carried out for the entire time period examined, while the battery depth of discharge time evolution is also investigated. The developed model is successfully applied for three representative wind potential types. The results obtained are quite encouraging supporting the applicability of the proposed solution.  相似文献   

13.
This paper presents specific life cycle GHG emissions from wind power generation from six different 5 MW offshore wind turbine conceptual designs. In addition, the energy performance, expressed by the energy indicators Energy Payback Ratio (EPR) Energy Payback Time (EPT), is calculated for each of the concepts.There are currently few LCA studies in existence which analyse offshore wind turbines with rated power as great as 5 MW. The results, therefore, give valuable additional environmental information concerning large offshore wind power. The resulting GHG emissions vary between 18 and 31.4 g CO2-equivalents per kWh while the energy performance, assessed as EPR and EPT, varies between 7.5 and 12.9, and 1.6 and 2.7 years, respectively. The relatively large ranges in GHG emissions and energy performance are chiefly the result of the differing steel masses required for the analysed platforms. One major conclusion from this study is that specific platform/foundation steel masses are important for the overall GHG emissions relating to offshore wind power. Other parameters of importance when comparing the environmental performance of offshore wind concepts are the lifetime of the turbines, wind conditions, distance to shore, and installation and decommissioning activities.Even though the GHG emissions from wind power vary to a relatively large degree, wind power can fully compete with other low GHG emission electricity technologies, such as nuclear, photovoltaic and hydro power.  相似文献   

14.
Cross utilization of photovoltaic/wind/battery/fuel cell hybrid-power-system has been demonstrated to power an off-grid mobile living space. This concept shows that different renewable energy sources can be used simultaneously to power off-grid applications together with battery and hydrogen energy storage options. Photovoltaic (PV) and wind energy are used as primary sources and a fuel cell is used as backup power. A total of 2.7 kW energy production (wind and PV panels) along with 1.2 kW fuel cell power is supported with 17.2 kWh battery and 15 kWh hydrogen storage capacities. Supply/demand scenarios are prepared based on wind and solar data for Istanbul. Primary energy sources supply load and charge batteries. When there is energy excess, it is used to electrolyse water for hydrogen production, which in turn can either be used to power fuel cells or burnt as fuel by the hydrogen cooker. Power-to-gas and gas-to-power schemes are effectively utilized and shown in this study. Power demand by the installed equipment is supplied by batteries if no renewable energy is available. If there is high demand beyond battery capacity, fuel cell supplies energy in parallel. Automatic and manual controllable hydraulic systems are designed and installed to increase the photovoltaic efficiency by vertical axis control, to lift up & down wind turbine and to prevent vibrations on vehicle. Automatic control, data acquisition, monitoring, telemetry hardware and software are established. In order to increase public awareness of renewable energy sources and its applications, system has been demonstrated in various exhibitions, conferences, energy forums, universities, governmental and nongovernmental organizations in Turkey, Austria, United Arab Emirates and Romania.  相似文献   

15.
One common ownership structure for community‐scale wind development in the USA is a behind‐the‐meter installation. In addition to allowing the displacement of retail energy, such installations may also affect peak demand, which is frequently an important component of electricity tariffs (via ‘capacity’ or ‘demand’ charges). This paper uses Monte Carlo simulation techniques on original wind and load data for the University of Minnesota at Morris in order to estimate the savings associated with lower peak demand, as a result of the installation of a 1.65‐MW turbine in 2005. Results represent the first (to our knowledge) quantitative effort to estimate this aspect of the economics of wind power projects, and they suggest these previously ignored savings comprise nearly 10% of this project's gross projected revenue stream, even though the local utility's demand charge in this case is only 63% of the industry average. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
The techno-economic advantages of grid-connected hybrid energy system (HES) exploit synergies to improve reliability and economic efficiency while maintaining grid stability. Therefore, this paper proposes a risk-averse optimal operational strategy of grid-connected photovoltaic/wind/battery/diesel HES to participate into two energy markets including electricity and hydrogen markets. The grid company can flexibly trade power into two markets to maximally achieve profits based on price arbitrage. The risk influences of the uncertainties, i.e., photovoltaic/wind generation, and electricity prices on the expected revenue are evaluated with CVaR model. For a better exhibition of seasonal variability effects on HES optimal operation strategy, two typical Spring/Summer days are chosen. The proposed risk-averse optimal operational strategy is formulated as a two-stage mixed-integer linear programming (MILP) model. The results in a Spring day simulation under non-risk situation indicate that the overall expected revenue can be improved 2.74 times larger if considering hydrogen market. Moreover, the optimal operational strategy of hydrogen production is considerably affected by unpredictable wind farm. Sensitivity analysis also validates that the changes of PV/WT curtailment penalty have a profound influence than battery degradation coefficient on the HES expected revenue.  相似文献   

17.
杨春 《太阳能学报》2022,43(12):70-78
当前中国新能源(特别是风电与光伏)发展存在宏观引导与长期规划不足的现象。如何准确地评估我国各地区的风电光伏发展潜力,从而科学地指导新能源健康有序发展是亟待解决的问题。为此,提出一种基于熵权TOPSIS的风电光伏发展潜力评估模型。首先,在考虑中国风电光伏能源发展特点与主要矛盾的基础上,构建风电光伏发展潜力的评估指标体系,并提出基于熵权法TOPSIS的风电光伏发展潜力评估模型;然后,使用该模型对中国31个地区的风电光伏发展潜力进行评估与分析;最后,根据各地区的评估分析结果与风电光伏发展特点,提出针对性的发展建议。  相似文献   

18.
In this paper, a procedure for the probabilistic treatment of solar irradiance and wind speed data is reported as a method of evaluating, at a given site, the electric energy generated by both a photovoltaic system and a wind system. The aim of the proposed approach is twofold: first, to check if the real probability distribution functions (PDFs) of both clearness index and wind speed overlap with Hollands and Huget and Weibull PDFs, respectively; and then to find the parameters of these two distributions that best fit the real data. Further, using goodness‐of‐fit tests, these PDFs are compared with another set of very common PDFs, namely the Gordon and Reddy and Lognormal functions, respectively. The results inform the design of a pre‐processing stage for the input of an algorithm that probabilistically optimizes the design of hybrid solar wind power systems. In this paper, the validity of the proposed procedure was tested using long‐term meteorological data from Acireale (Italy). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
通过对唐山市区太阳能和风能资源状况调查分析,对全年不同方位角和倾角上的太阳能辐射量进行模拟计算,得出南偏东9.8°方向、倾角为39.7°的倾斜面上接收的太阳能辐射量最大,其值为1.62×106Wh/m2。研究中对3kW风力发电机和1kW光伏发电系统的发电量进行了计算,并以1辆纯电动轿车为负载进行了容量配比优化,设计了风力发电系统、风光互补系统及光伏系统三种不同的方案,经过对各方案的经济性、可靠性及稳定性分析,得出最佳的设计方案为风光互补发电系统,该系统风力发电装机容量为3kW,光伏发电装机容量为8.96kW。  相似文献   

20.
The present paper has disseminated the design approach, project implementation, and economics of a nano-grid system. The deployment of the system is envisioned to acculturate the renewable technology into Indian society by field-on-laboratory demonstration (FOLD) and “bridge the gaps between research, development, and implementation.” The system consists of a solar photovoltaic (PV) (2.4 kWp), a wind turbine (3.2 kWp), and a battery bank (400 Ah). Initially, a prefeasibility study is conducted using the well-established HOMER (hybrid optimization model for electric renewable) software developed by the National Renewable Energy Laboratory (NREL), USA. The feasibility study indicates that the optimal capacity for the nano-grid system consists of a 2.16 kWp solar PV, a 3 kWp wind turbine, a 1.44 kW inverter, and a 24 kWh battery bank. The total net present cost (TNPC) and cost of energy (COE) of the system are US$20789.85 and US$0.673/kWh, respectively. However, the hybrid system consisting of a 2.4 kWp of solar PV, a 3.2 kWp of wind turbine, a 3 kVA of inverter, and a 400 Ah of battery bank has been installed due to unavailability of system components of desired values and to enhance the reliability of the system. The TNPC and COE of the system installed are found to be US$20073.63 and US$0.635/kWh, respectively and both costs are largely influenced by battery cost. Besides, this paper has illustrated the installation details of each component as well as of the system. Moreover, it has discussed the detailed cost breakup of the system. Furthermore, the performance of the system has been investigated and validated with the simulation results. It is observed that the power generated from the PV system is quite significant and is almost uniform over the year. Contrary to this, a trivial wind velocity prevails over the year apart from the month of April, May, and June, so does the power yield. This research demonstration provides a pathway for future planning of scaled-up hybrid energy systems or microgrid in this region of India or regions of similar topography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号