首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The photostabilization of poly(styrene‐b‐ethylene‐co‐butylene‐b‐styrene) (SEBS), by hindered phenols and their combination with phosphite antioxidants has been studied by using a variety of spectroscopic methods including FTIR, UV, and luminescence spectroscopy coupled with crosslinking and hydroperoxide analysis. The addition of a hindered phenol was found to photostabilize the SEBS in terms of the inhibition of discoloration, and the formation of hydroperoxides, acetophenone, and oxidation products, as well as chain scission and disaggregation of the styrene units. Strong synergism was found with combinations of a hindered phenol and phosphite antioxidant, especially with an increase in the phosphite concentration. Residual titanium traces present as impurities in the material were found to play an important role in the photo‐oxidation of SEBS. Molecular weight appeared to be a determining factor in the proportion of chain scission/crosslinking reactions that occured. Nevertheless, the addition of antioxidants and the reduction of titanium content also proved satisfactory in stabilizing the low‐molecular‐weight material. J. VINYL. ADDIT. TECHNOL. 12:2–7, 2006. © 2006 Society of Plastics Engineers  相似文献   

2.
The effects of elastomer type on the morphology, flammability, and mechanical properties of high‐impact polystyrene (HIPS)/polystyrene (PS)‐encapsulated magnesium hydroxide (MH) were investigated. The ternary composites were characterized by cone calorimetry, mechanical testing, and scanning electron microscopy. Morphology was controlled with poly[styrene‐b‐(ethylene‐co‐butylene)‐b‐styrene] (SEBS) triblock copolymer or the corresponding maleinated poly[styrene‐b‐(ethylene‐co‐butylene)‐b‐styrene] (SEBS‐g‐MA). The HIPS/SEBS/PS‐encapsulated MH composites exhibited separation of the filler and elastomer, whereas the HIPS/SEBS‐g‐MA/PS‐encapsulated MH composites exhibited encapsulation of the filler by SEBS‐g‐MA. The flame‐retardant and mechanical properties of the ternary composites were strongly dependent on microstructure. The composites with an encapsulation structure showed higher flame‐retardant properties than those with a separation structure at the optimum use level of SEBS‐g‐MA. Furthermore, the composites with a separation structure showed a higher modulus and impact strength than those with an encapsulation structure. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

3.
Mechanical properties of isotactic polypropylene/wollastonite/styrene rubber block copolymers (iPP/wollastonite/SRBC) composites were studied as a function of elastomeric poly(styrene‐b‐ethylene‐co‐butylene‐b‐styrene) triblock copolymer (SEBS) and SEBS grafted with maleic anhydride (SEBS‐g‐MA) content from 0 to 20 vol%. Microphase morphology was stronger influenced by SRBC elastomers than by different wollastonite types. Higher encapsulation ability of SEBS‐g‐MA than SEBS caused more expressive core‐shell morphology and consequently higher notched impact strength as well as yield parameters, but lower Young's modulus. Higher ductility of the composites with SEBS than with SEBS‐g‐MA has been primarily caused by better miscibility of the polypropylene chains with SEBS molecules. Surface properties of components and adhesion parameters also indicated that adhesion at SEBS‐g‐MA/wollastonite interface, which was stronger than the one at the SEBS/wollastonite interface, influenced higher encapsulation of wollastonite particles by SEBS‐g‐MA. POLYM. ENG. SCI., 47:1873–1880, 2007. © 2007 Society of Plastics Engineers  相似文献   

4.
Styrene‐b‐(ethylene‐co‐butylene)‐b‐styrene (SEBS) and styrene‐b‐(ethylene‐co‐propylene) (SEP, SEPSEP) block copolymers with different styrene contents and different numbers of blocks in the copolymer chain were functionalized by melt radical grafting with glycidyl methacrylate (GMA) and employed as compatibilizers for PET‐based blends. Binary blends of PET with both functionalized (SEBS‐g‐GMA, SEP‐g‐GMA, SEPSEP‐g‐GMA) and neat (SEBS, SEP, SEPSEP) copolymers (75 : 25 w/w) and ternary blends of PET and PP (75 : 25 w/w) with various amounts (2.5–10 phr) of both modified and unmodified copolymers were prepared in an internal mixer, and their properties were evaluated by SEM, DSC, melt viscosimetry, and tensile and impact tests. The roles of the chemical structure, grafting degree, and concentration of the various copolymers on blend compatibilization was investigated. The blends with the grafted copolymers showed a neat improvement of phase dispersion and interfacial adhesion compared to the blends with nonfunctionalized copolymers. The addition of grafted copolymers resulted in a marked increase in melt viscosity, which was accounted for by the occurrence of chemical reactions between the epoxide groups of GMA and the carboxyl/hydroxyl end groups of PET during melt mixing. Blends with SEPSEP‐g‐GMA and SEBS‐g‐GMA, at concentrations of 5–10 phr, showed a higher compatibilizing effect with enhanced elongation at break and impact resistance. The effectiveness of GMA‐functionalized SEBS was then compared to that of maleic anhydride–grafted SEBS. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 2201–2211, 2005  相似文献   

5.
The effect of poly[styrene‐b‐(ethylene‐co‐butylene)‐b‐styrene] (SEBS) copolymer on the thermal and dielectric properties of polypropylene (PP)—nanosilica (NS) composites in relation with morphological aspects revealed by atomic force microscopy (AFM) was investigated in this article. SEBS hindered the crystallization process of PP in PP/NS composites, leading to a smaller degree of crystallinity and lower perfection of crystalline structure. Broader lamellar thickness distribution was obtained in nanocomposites containing SEBS. Almost two times higher dielectric loss as compared to PP reference and two relaxation processes were detected in εr ′′(f) curves of nanocomposites. The first peak, in the same frequency domain as for the references, was assigned to α‐relaxation of polymer components together with interfacial polarization. The relaxation time follows the Arrhenius law with an activation energy of 80–90 kJ/mol. For the second process, the temperature dependence of the relaxation times obeyed the VFT equation. The dielectric changes following the incorporation of SEBS support its tendency to hinder the motional processes in PP, in accordance with DSC results. A smooth transition from a phase rich in SEBS to one containing mainly PP was detected in the AFM image of the composite with the larger amount of SEBS, emphasizing the good compatibility at the PP/SEBS interface. POLYM. ENG. SCI., 53:2081–2092, 2013. © 2013 Society of Plastics Engineers  相似文献   

6.
Eighty/twenty polypropylene (PP)/styrene–ethylene–butylene–styrene (SEBS) and 80/20 PP/maleated styrene–ethylene–butylene–styrene (SEBS‐g‐MA) blends reinforced with 30 wt % short glass fibers (SGFs) were prepared by extrusion and subsequent injection molding. The influence of the maleic anhydride (MA) functional group grafted to SEBS on the properties of SGF/SEBS/PP hybrid composites was studied. Tensile and impact tests showed that the SEBS‐g‐MA copolymer improved the yield strength and impact toughness of the hybrid composites. Extensive plastic deformation occurred at the matrix interface layer next to the fibers of the SGF/SEBS‐g‐MA/PP composites during impact testing. This was attributed to the MA functional group, which enhanced the adhesion between SEBS and SGF. Differential scanning calorimetry measurements indicated that SEBS promoted the crystallization of PP spherulites by acting as active nucleation sites. However, the MA functional group grafted to SEBS retarded the crystallization of PP. Finally, polarized optical microscopy observations confirmed the absence of transcrystallinity at the glass‐fiber surfaces of both SGF/SEBS/PP and SGF/SEBS‐g‐MA/PP hybrid composites. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 1303–1311, 2002  相似文献   

7.
Ternary composites of high‐impact polystyrene (HIPS), elastomer, and magnesium hydroxide filler encapsulated by polystyrene were prepared to study the relationships between their structure and mechanical properties. Two kinds of morphology were formed. Separation of elastomer and filler was found when a nonpolar poly[styrene‐b‐(ethylene‐co‐butylene)‐b‐styrene] triblock copolymer (SEBS) was incorporated. Encapsulation of filler by elastomer was achieved by using the corresponding maleinated SEBS (SEBS‐g‐MA). The mechanical properties of ternary composites were strongly dependent on microstructure. In this study, the composites with separate dispersion structure showed higher elongation, modulus and impact strength than those of encapsulation structure. Impact‐fracture surface observation showed that the toughening mechanism was mainly due to the massive cavitation and extensive matrix yielding. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102:5184–5190, 2006  相似文献   

8.
Supermolecular structure of isotactic polypropylene/wollastonite/styrenic rubber block copolymers composites were studied as a function of elastomeric poly‐ (styrene‐b‐ethylene‐co‐butylene‐b‐styrene) triblock copolymer (SEBS) and the SEBS grafted with maleic anhydride (SEBS‐g‐MA) content (from 0 to 20 vol%) by optical, scanning, and transmission electron microscopy, wide‐angle X‐ray diffraction and differential scanning calorimetry. Wollastonite particles disturbed the spherulitization of polypropylene matrix. Both elastomers affected the crystallization of polypropylene matrix mainly by solidification effect. Although SEBS‐g‐MA encapsulated wollastonite particles more expressive than SEBS forming thus core‐shell morphology in higher extent, scanning electron micrographs indicated more constrained wollastonite particles in fractured surfaces of composites with SEBS elastomer. Moreover, SEBS‐g‐MA disorientated wollastonite particles and affected reorientation of the polypropylene crystallites stronger than SEBS elastomer. POLYM. ENG. SCI., 47:2145–2154, 2007. © 2007 Society of Plastics Engineers  相似文献   

9.
Compatibilizing effects of styrene/rubber block copolymers poly(styrene‐b‐butadiene‐b‐styrene) (SBS), poly(styrene‐b‐ethylene‐co‐propylene) (SEP), and two types of poly(styrene‐b‐ethylene‐co‐butylene‐b‐styrene) (SEBS), which differ in their molecular weights on morphology and selected mechanical properties of immiscible polypropylene/polystyrene (PP/PS) 70/30 blend were investigated. Three different concentrations of styrene/rubber block copolymers were used (2.5, 5, and 10 wt %). Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to examine the phase morphology of blends. The SEM analysis revealed that the size of the dispersed particles decreases as the content of the compatibilizer increases. Reduction of the dispersed particles sizes of blends compatibilized with SEP, SBS, and low‐molecular weight SEBS agrees well with the theoretical predictions based on interaction energy densities determined by the binary interaction model of Paul and Barlow. The SEM analysis confirmed improved interfacial adhesion between matrix and dispersed phase. The TEM micrographs showed that SBS, SEP, and low‐molecular weight SEBS enveloped and joined pure PS particles into complex dispersed aggregates. Bimodal particle size distribution was observed in the case of SEP and low‐molecular weight SEBS addition. Notched impact strength (ak), elongation at yield (εy), and Young's modulus (E) were measured as a function of weight percent of different types of styrene/rubber block copolymers. The ak and εy were improved whereas E gradually decreased with increasing amount of the compatibilizer. The ak was improved significantly by the addition of SEP. It was found that the compatibilizing efficiency of block copolymer used is strongly dependent on the chemical structure of rubber block, molecular weight of block copolymer molecule, and its concentration. The SEP diblock copolymer proved to be a superior compatibilizer over SBS and SEBS triblock copolymers. Low‐molecular weight SEBS appeared to be a more efficient compatibilizer in PP/PS blend than high‐molecular weight SEBS. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 291–307, 1999  相似文献   

10.
The copolymer of styrene–ethylene–butylene–styrene triblock copolymer‐g‐polylactic acid (SEBS‐g‐PLA) was successfully prepared using a novel solvothermal synthetic method, in which the graft copolymerization of PLA and SEBS was simply performed in cholorform solution at 100–150°C with benzoyl peroxide (BPO) as initiator. The effect of various factors including the reaction temperature and time and the content of BPO and PLA on the graft copolymerization was investigated in detail. It is found that the optimal reaction condition for the grafted copolymers SEBS‐g‐PLA was 120°C for 5 h, while the optimal formulation of SEBS/PLA/BPO was 5 g/2 g/0.5 g in 30 mL chloroform. The properties and microstructures of the obtained SEBS‐g‐PLA copolymers were also studied. The tensile strength and elongation at break were higher than that of pure SEBS and improved with the increase of grafting degree. In addition, SEBS‐g‐PLA copolymer possessed two‐phase structure with vague phase boundaries. The as‐prepared SEBS‐g‐PLA copolymers can be used as the toughening component to improve the impact strength of PLA. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

11.
Microstructural characteristics of isotactic‐polypropylene/glass bead (iPP/GB) and iPP/wollastonite (iPP/W) composites modified with thermoplastic elastomers, poly(styrene‐b‐ethylene‐co‐butylene‐b‐styrene) copolymer (SEBS) and corresponding block copolymer grafted with maleic anhydride (SEBS‐g‐MA), were investigated. Scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and dynamic mechanical analyses (DMA) showed that the iPP/SEBS and iPP/SEBS‐g‐MA blends were partially compatible two‐phase systems. Well‐dispersed spherical GB and acicular W particles without evidence of interfacial adhesion were observed in the iPP/GB and iPP/W binary composites respectively. Contrary to the blends, melt flow rates of the iPP/GB and PP/W composites decreased more with SEBS‐g‐MA than with SEBS because of enhanced interfacial adhesion with SEBS‐g‐MA elastomer. The SEM analyses showed that the ternary composites containing SEBS exhibited separate dispersion of the rigid filler and elastomer particles (i.e., separate microstructure). However, SEBS‐g‐MA elastomer not only encapsulated the spherical GB and acicular W particles completely with strong interfacial adhesion (i.e., core‐shell microstructure) but also dispersed separately throughout iPP matrix. In accordance with the SEM observations, the DSC and DMA revealed quantitatively that the rigid filler and SEBS particles in iPP matrix acted individually, whereas the rigid filler particles in the ternary composites containing SEBS‐g‐MA acted like elastomer particles because of the thick elastomer interlayer around the filler particles. The Fourier transform infrared analyses revealed an esterification reaction inducing the strong interfacial adhesion between the SEBS‐g‐MA phase and the filler particles. POLYM. COMPOS., 31:1265–1284, 2010. © 2009 Society of Plastics Engineers  相似文献   

12.
Short‐glass‐fiber (SGF)‐reinforced polypropylene (PP) composites toughened with a styrene/ethylene butylene/styrene (SEBS) triblock copolymer were injection molded after extrusion. Furthermore, a maleic anhydride (MA)‐grafted SEBS copolymer (SEBS‐g‐MA) was used as an impact modifier and compatibilizer. The effects of the processing conditions and compatibilizer on the microstructure and tensile and impact performance of the hybrid composites were investigated. In the route 1 fabrication process, SGF, PP, and SEBS were blended in an extruder twice, and this was followed by injection molding. In route 2, or the sequential blending process, the elastomer and PP were mixed thoroughly before the addition of SGF. In other words, either PP and SEBS or PP and SEBS‐g‐MA pellets were premixed in an extruder. The produced pellets were then blended with SGF in the extruder, and this was followed by injection molding. The SGF/SEBS‐g‐MA/PP hybrid fabricated by the route 2 process exhibited the highest modulus, yield stress, tensile stress at break, Izod impact energy, and Charpy drop weight impact strength among the composites investigated. This was due to the formation of a homogeneous SEBS elastomeric interlayer at the SGF and matrix interface of the SGF/SEBS‐g‐MA/PP hybrid. This SEBS rubbery layer enhanced the interfacial bonding between SGF and the matrix of the SGF/SEBS‐g‐MA/PP hybrid. The correlations between the processing, microstructure, and properties of the hybrids were investigated. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1384–1392, 2003  相似文献   

13.
Mechanical properties of the isotactic‐polypropylene/glass bead (iPP/GB) and iPP/wollastonite (iPP/W) composites modified with thermoplastic elastomers, the poly(styrene‐b‐ethylene‐co‐butylene‐b‐styrene) copolymer (SEBS) and corresponding block copolymer grafted with maleic anhydride (SEBS‐g‐MA), were investigated. An increase in toughness of iPP with the elastomers was associated with a decrease in rigidity and strength. Mechanical performance of iPP increased more with acicular W than with spherical GB due to reinforcing effect of W. Comparing the (iPP/GB)/SEBS and (iPP/W)/SEBS composites having the separate microstructure, strength and toughness values of the iPP/GB and iPP/W composites increased more with SEBS‐g‐MA at the expense of rigidity due to the core‐shell microstructure with strong interfacial adhesion. Moreover, the iPP/W composite exhibited superior mechanical performance with 2.5 and 5 vol% of SEBS‐g‐MA because of a positive synergy between the core‐shell microstructure and reinforcing effect of acicular W. The extended models revealed that the elastomer and filler particles in the (iPP/GB)/SEBS and (iPP/W)/SEBS composites acted individually due to the separate microstructure. However, the rigid GB and W particles encapsulated with the thick elastomer interlayer (R0/R1 = 0.91) in the (iPP/GB)/SEBS‐g‐MA and (iPP/W)/SEBS‐g‐MA composites acted like neither big elastomer particles nor like individual rigid particles, inferring more complicated failure mechanisms in the core‐shell composites. POLYM. COMPOS., 31:1285–1308, 2010. © 2010 Society of Plastics Engineers  相似文献   

14.
In this work, five ternary blends based on 70% by weight (wt %) of polypropylene (PP) with 30% wt of polycarbonate (PC)/poly(styrene‐b‐(ethylene‐co‐butylene)‐b‐styrene)(SEBS) dispersed phase consists of 15 wt % PC and 15 wt % reactive (maleic anhydride grafted) and nonreactive SEBS mixtures at various ratios were prepared in a co‐rotating twin screw extruder. scanning electron microscopy (SEM) micrographs showed that the blends containing only nonreactive SEBS exhibited a fine dispersion of core‐shell particles. With decreasing the SEBS/SEBS‐g‐Maleic Anhydride (MAH) weight ratio, the morphology changed from the core‐shell particles to a mixed of core‐shell, rod‐like and individual particles. This variation in phase morphology affected the thermal and mechanical properties of the blends. DSC results showed that the blends containing only nonreactive SEBS exhibited a minimum in degree of crystallinity due to the homogeneous nucleation of core‐shell particles. Mechanical testing showed that in the SEBS/SEBS‐g‐MAH weight ratio of 50/50, the modulus and impact strength increased compared with the PP matrix while the yield stress had minimum difference with that of PP matrix. These effects could be attributed to the formation of those especial microstructures revealed by the SEM studies. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

15.
Nanocomposites based on poly(styrene‐b‐ethylene‐ran‐butylene‐b‐styrene) (SEBS) and carbon nanotubes (CNTs) (SEBS/CNT) as well as SEBS grafted with maleic anhydride (SEBS‐MA)/CNT were successfully prepared for electromagnetic shielding applications. Both SEBS/CNT and SEBS‐MA/CNT nanocomposites were prepared by melt compounding and were post‐processed using two different techniques: tape extrusion and compression moulding. The different nanocomposites were characterized by Raman spectroscopy and rheological analysis. Their mechanical properties, electrical properties (10-2–105 Hz) and electromagnetic shielding effectiveness (8.2–12.4 GHz) were also evaluated. The results showed that the CNT loading amount, the presence of MA in the matrix and the shaping technique used strongly influence the final morphologies and properties of the nanocomposites. Whilst the nanocomposite containing 8 wt% CNTs prepared by compression moulding presented the highest electromagnetic shielding effectiveness (with a value of 56.73 dB, which corresponds to an attenuation of 99.9996% of the incident radiation), the nanocomposite containing 5 wt% CNTs prepared by tape extrusion presented the best balance between electromagnetic and mechanical properties and was a good candidate to be used as an efficient flexible electromagnetic interference shielding material. © 2018 Society of Chemical Industry  相似文献   

16.
Steady‐ and oscillatory‐shear rheological behaviors of polypropylene/glass bead (PP/GB) and PP/wollastonite (PP/W) melts modified with thermoplastic elastomers, poly(styrene‐b‐ethylene‐co‐butylene‐b‐styrene) copolymer (SEBS) and the corresponding block copolymer grafted with maleic anhydride (SEBS‐g‐MA), were examined by means of a parallel‐plate rheometer. With adding the elastomers (SEBS and SEBS‐g‐MA) and fillers (spherical GB and acicular W) to PP, viscosity especially at low shear rates and shear‐thinning flow behavior at high shear rates were pronounced as evidenced quantitatively by Carreau–Yasuda (CY) parameters, but Cox–Merz analogy became weakened. Besides, melt‐elasticity in terminal region and relaxation time (tc) in crossing point increased, indicating an enhancement in quasi‐solid behavior of molten PP. Comparing with the elastomers, rheological behaviors of molten PP were more influenced with adding the rigid fillers, especially with W due to distinct acicular shape of W particles. SEBS‐g‐MA elastomer more affected rheological behaviors of the ternary composites than SEBS elastomer, implying that SEBS elastomer and the filler particles behaved individually (i.e., development of separate microstructure) in (PP/GB)/SEBS and (PP/W)/SEBS ternary composites, but core‐shell microstructure developed with strong interfacial adhesion by adding SEBS‐g‐MA elastomer, and the filler particles encapsulated with the thick SEBS‐g‐MA elastomer interlayer (i.e., core‐shell particles) acted like neither big elastomer particles nor like individual rigid particles in melt‐state. Moreover, effects of SEBS‐g‐MA elastomer reached a maximum on rheological behaviors of (PP/W)/SEBS‐g‐MA ternary composite, indicating a synergy between core‐shell microstructure and acicular W particles. Correlations between oscillatory‐shear flow properties and microstructures of the blends and composites were evaluated using Cole–Cole (CC), Han–Chuang (HC), and van Gurp–Palmen (vGP) plots. COMPOS., 2012. © 2012 Society of Plastics  相似文献   

17.
Two types of styrene‐b‐(ethylene‐co‐1‐butene)‐b‐styrene triblock copolymer (SEBS) were functionalized through ozone treatment. The structure and properties of ozonized SEBS and the mechanical properties of their blend with Polyamide 6 (PA6) were studied by FTIR spectroscopy, gel permeation chromatography, gel content measurement, contact angle measurement, SEM, and mechanical properties measurement. The experimental results show that through ozone treatment, some oxygen‐containing groups (mainly carbonyl groups) are introduced onto the molecular chains of SEBS. The polarity of SEBS is thus improved. Compared with star‐shaped SEBS602, SEBS503 of linear shape is more susceptible to ozone oxidation. The polarity of ozonized SEBS503 is higher than that of ozonized SEBS602. The improvement of mechanical properties of PA6/ozonized SEBS blend is attributed to the improvement of the dispersion of ozonized SEBS in PA6 matrix and the interfacial adhesion between PA6 and ozonized SEBS. Compared with that of PA6/ozonized SEBS602 blend, the size of dispersed phase in PA6/ozonized SEBS503 blend is smaller, and the interfacial adhesion is stronger. The notched Izod impact strength of PA6/ozonized SEBS503 (90 min) (90/10) blend is 49.6 kJ/m2, is higher than that of PA6/ozonized SEBS602 (90 min) (90/10) blend, which is only 21.3 kJ/m2. The impact strength of PA6/ozonized SEBS503 (90 min) (80/20) blend is 68.7 kJ/m2, is still higher than that of PA6/ozonized SEBS602 (90 min) (80/20) blend, which is 60.2 kJ/m2. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

18.
In this work, ternary polymer blends based on (polyamide 6)/(poly[styrene‐co‐acrylonitrile])/(poly[styrene‐b‐{ethylene‐co‐butylene}‐b‐styrene]) (SEBS) triblock copolymer and a varying concentration of the reactive (maleic anhydride)‐grafted SEBS were prepared by using a melt‐blending process. The effects of the material parameters (composition of ternary blends and SEBS/[{maleic anhydride}‐grafted SEBS] concentration ratio) and blending sequence on the morphological and mechanical properties of ternary blends were studied. Taguchi experimental design methodology was employed to design the experiments and select the material and processing parameters for the optimized mechanical properties. Tensile properties (Young's modulus and yield stress) and impact strength were considered as the response variables. It was demonstrated that there is a meaningful relationship between the composition of blends, processing parameters, observed phase structure, and obtained mechanical properties. The mechanical tests showed that the highest impact strength was achieved as the dispersion of the rubbery phase achieved an optimum size of about 1 μm. J. VINYL ADDIT. TECHNOL., 23:329–337, 2017. © 2015 Society of Plastics Engineers  相似文献   

19.
The compatibilizing effect of the triblock copolymer poly(styrene‐b‐ethylene‐co‐butylene‐b‐styrene) (SEBS) on the morphological and mechanical properties of virgin and recycled polypropylene (PP)/high‐impact polystyrene (HIPS) blends was studied, with the properties optimized for rigid composite films. The components of the blend were obtained from municipal plastic waste, PP being acquired from mineral water bottles (PPb) and HIPS from disposable cups. These materials were preground, washed only with water, dried with hot air, and ground again (PPb) or agglutinated (HIPS). Blends with three different weight ratios of PPb and HIPS (6:1, 6:2, and 6:3) were prepared, and three different concentrations of SEBS (5, 6, and 7 wt %) were used for investigations of its compatibilizing effect. Scanning electron microscopy showed that SEBS reduced the diameter of dispersed HIPS particles in the globular and fibril shapes and improved the adhesion between the disperse phase and the matrix. However, SEBS interactions with PPb and HIPS influenced the mechanical properties of the compatibilized PPb/HIPS/SEBS blends. An adequate composition of PP/HIPS, for both virgin and recycled blends, for applications in composite films with characteristics similar to those of synthetic paper was obtained with a minimal amount of SEBS and a maximal HIPS/PP ratio in the range of concentrations studied. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2861–2867, 2003  相似文献   

20.
To develop new tribomaterials for mechanical sliding parts, investigations were carried out on the influence of adding styrene–ethylene/butylene–styrene block copolymer (SEBS) on the rheological, mechanical, and tribological properties of polyamide 6 (PA6) nanocomposite, which is a commercial product of layered silicate (clay) filled polyamide 6 (PA6/Clay). Two kinds of block copolymers, unmodified SEBS (SEBS) and maleic anhydride‐grafted SEBS (SEBS‐g‐MA), were added with PA6/Clay nanocomposite. Dynamic viscoelastic properties in the molten state of these nanocomposites and their tensile, impact, and tribological properties of these nanocomposites were evaluated. Dynamic viscoelastic properties were found to increase with the addition of SEBS and were influenced, in particular, by block copolymers containing SEBS‐g‐MA. Influence of the addition of SEBS on mechanical properties of these systems differed for each mechanical property. Although tensile properties decreased with SEBS, Izod impact properties were improved with the addition of SEBS‐g‐MA. Tribological properties were improved with the addition of block copolymer, and the influence of the amount of addition was higher than the type of block copolymer used. These results indicate that new tribomaterials developed have sufficient balance amongst moldability, mechanical, and tribological properties. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号