首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An optimal drift design model for a linear multi‐story building structure under dynamic lateral forces is presented. The drift design model is formulated into a minimum weight design problem subjected to constraints on stresses, the displacement at the top of a building, and inter‐story drift. The optimal drift design model consists of three main components: an optimizer, a response spectrum analysis module, and a sensitivity analysis module. Using a small example, the validation of the proposed model has been tested by a comparison of optimal solutions. Then, the performance of the optimal drift design model is demonstrated by application to three steel frame structures including a 40‐story building. Various structural responses including lateral displacement and inter‐story drift distributions along the height of the structure at the initial and final design stages are presented in figures and tables. Time‐consuming trial‐and‐error processes related to drift control of a tall building subjected to lateral loads is avoided by the proposed optimal drift design method. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

2.
In super high‐rise buildings with varying story heights, the wind‐induced inter‐story drifts might violate the specified limit. However, these effects have seldom been concerned in wind‐induced response analysis. The theory and application of equivalent static wind load (ESWL) for wind‐induced inter‐story drifts of super high‐rise buildings were studied in this paper. A spectral decomposition method suitable for multi‐point excitation problems was firstly proposed. The formula of ESWL targeting for largest inter‐story drift was derived. For more reasonable structural design, the ESWL for multiple targets including displacement atop of building and inter‐story drifts at all story levels is put forward, in which the dominant modal inertial forces are adopted as the based load vectors. The presented methods were finally verified by its application for the wind‐induced response analysis for a tallest super tall building in Guangzhou. The researched results showed that the proposed spectral decomposition method not only has the same precision as the complete quadratic combination method but also possesses higher computation efficiency. The ESWL for multiple targets produces the same static responses for all the specified wind‐induced response, so it is much more rational for wind‐resistant structural design. Meanwhile, it is more reasonable to select the wind‐induced responses in the same direction simultaneously as the targeted values for obtaining the required ESWLs; however, the ESWL targeting for the wind‐induced responses in all degrees of freedom would generate more queer and unrealistic ESWLs distribution. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
The numerical analysis of the seismic performance for tall chevron panel buckling‐restrained braced steel frames (PBRBFs) under small and strong earthquake excitations has been carried out to investigate a capacity design procedure for chevron PBRBFs and to examine the effects of axial strength distribution of braces along the height of buildings, vertical supports of braces for the braced beams and the overstrength of braces on the seismic response of PBRBFs. It revealed that the chevron braces that remained elastic can actually provide the vertical supports for the braced beams. Under severe earthquake excitations, the vertical supports deteriorated greatly after braces yielding. The PBRBFs designed by omitting vertical supports of braces for the braced beams and considering the overstrength of braces exhibited superior performance with smaller plastic deformations for braced beams and reduction in ductility demands for panel buckling‐restrained braces (PBRBs) as compared with the others. The distribution of yielding for PBRBs in 10‐story buildings verified that the participation from the higher modes is not very remarkable and that the capacity design based on the first‐mode response can be considered for multistory PBRBFs. Moreover, on the basis of the analysis results of the 30‐story PBRBF, the participation of the higher modes should be taken into account for high‐rise PBRBFs. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
新颁布的《建筑抗震设计规范》(GB 50011—2010)在"钢框架结构的抗震构造措施"中所推荐的框架梁与柱的现场连接和框架柱与梁悬臂段的连接,是属于弱连接构造而非强连接构造。分析了造成差错的根本原因,指出了规范中推荐的连接构造和采用的极限承载力计算公式均存在缺陷。用极限承载力计算方法验证了规范推荐的上述连接抗力不足,存在安全隐患。据此,提出了加强连接的构造做法及其相应的计算建议。  相似文献   

5.
新颁布的《建筑抗震设计规范》(GB 50011—2010)在多高层钢结构房屋抗侧力构件连接计算规定中隐存的安全问题有:1)在表5.4.2的新规定中,把2001版抗震规范强制性条文中焊缝的承载力抗震调整系数γRwE由0.90降成了与梁的γRbE相同的0.75,使原要求的强连接降成了二者之间并无强弱关系的"等强连接";2)在8.2.8-1条中虽有弹性阶段"钢结构抗侧力构件连接的承载力设计值,不应小于相连构件的承载力设计值;高强度螺栓连接不得滑移"的规定,但在不同连接抗力条件下如何计算?并没有给出计算公式,而把连接计算全都放在了8.2.8-3~5条用极限承载力验算的方法上。经对该法的深入分析和验证,其结果却又不能满足8.2.8-1条连接抗力的必要条件,使规范中的极限承载力验算方法在抗侧力构件连接计算式中并不起控制作用,从而失去了它的验算价值,使"强连接弱构件"的基本原则在计算中并没有得到实施。  相似文献   

6.
Structural design of a 50‐story tall reinforced concrete residential building, which was planned to be constructed in Istanbul and given up afterwards by the investor, has been completed in accordance with the draft version of Seismic Design Code for Tall Buildings in Istanbul that adopts performance‐based seismic design as the basic approach as Tall Buildings Initiative Guidelines do. Seismic design of the building has formed the main part of the structural design process due to high seismicity of the proposed location and extremely irregular floor plan not conforming to usual tall building structures. The building consists of two individual buildings linked through sky floors at the top 12 stories whose design was one of the most challenging works. The building has been designed for design basis earthquake by elastic response spectrum analysis, and its seismic performance has been checked for maximum considered earthquake by nonlinear time‐history analyses carried out using PERFORM‐3D. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
The present study is devoted to reliability‐based optimum seismic design (RBOSD) of reinforced concrete (RC) moment frames within the context of performance‐based design. A chaotic enhanced colliding bodies optimization (CECBO) metaheuristic algorithm is proposed to achieve the optimization task. In the framework of CECBO, chaotic maps are employed to achieve randomness that results in better convergence rate in comparison with its standard version. For reliability assessment of structures during the optimization process, the Monte Carlo simulation method is employed. In order to reduce the prohibitive computational burden of the MCS in the optimization setting, a metamodel is proposed to accurately evaluate the required deterministic and probabilistic structural seismic nonlinear responses. Efficiency of the proposed methodology for implementation of RBOSD process for RC frames is illustrated by presenting two numerical examples.  相似文献   

8.
This paper presents an efficient, computer‐based technique for the optimum drift design of tall reinforced concrete (RC) buildings including non‐linear cracking effects under service loads. The optimization process consists of two complementary parts: an iterative procedure for the non‐linear analysis of tall RC buildings and a numerical optimality criteria (OC) algorithm. The non‐linear response of tall RC buildings due to the effects of concrete cracking is obtained by a series of linear analyses, the so‐called direct effective stiffness method. In each linear analysis, cracked structural members are first identified and their stiffness modified based on a probability‐based effective stiffness relationship. Stiffness reduction coefficients are introduced as measures of the remaining stiffness for structural elements after cracking. A rigorously derived OC method is developed to solve for the minimum weight/cost design problem subject to multiple drift constraints and member sizing requirements. A shear wall‐frame example is presented to illustrate the application of this optimal design method. The design results of the optimized structure with cracking effects are compared to those of the linear‐elastic structure without concrete cracking. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
Precast post‐tensioned rocking wall structural system has been developed in the recent past as a damage‐avoidance structural system for seismic regions. For a widespread use of this structural system, suitable design procedures are required to ensure a reliable and well‐predicted performance under different levels of seismic hazard. In the current study, a mid‐rise 20‐story rocking wall structure is selected and designed using the displacement‐based design procedure. Furthermore, two different capacity design procedures are used to predict the increased force demands due to higher mode effects. The time history results against moderate and severe level of seismic hazards show the effectiveness of displacement‐based design procedure in predicting and controlling the displacement and drift demands, while the simplified procedure and the modified modal superposition procedure for the capacity design are found to be unconservative and conservative, respectively. To further investigate the seismic demands, modal decomposition of inelastic seismic responses is carried out, and the contribution of different modes in the total responses is calculated. Based on this improved understanding, a mitigation technique of dual gap opening is employed. A detailed discussion about the location and design strength of the extra gap‐opening is carried out by considering different performance parameters. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
The relatively large number of structural elements and the variety of design code requirements complicate the design process of tall buildings. This process is exacerbated when the target is to obtain the seismic code‐compliant optimal design with minimum weight. The present paper aims at providing a practical methodology for the optimal design of steel tall building structures considering the constraints imposed by typical building codes. The applicability of the proposed approach is demonstrated through the determination of the optimal seismic design for 20‐, 40‐, and 60‐story buildings with a framed tube as well as a tube‐in‐tube system. Such a design gives rise to a basis for the fair comparison of the behavior of the framed tube with that of the tube‐in‐tube system under applied loads. The optimal weight of the buildings with the tube‐in‐tube system turns out to be slightly less than that of the buildings with the conventional framed‐tube system.  相似文献   

11.
Performance‐based seismic design (PBSD) has been widely recognized as an ideal method for use in the future practice of seismic design. This paper summarizes the advantages and disadvantages of the current seismic design code in China. Suggesting the tall building structures beyond the code specification (TBBC), applying PBSD method due to its many advantages of PBSD and aiming TBBC characteristics, a PBSD flowchart is presented and the proposed code is described. Structural seismic performance objectives, performance levels and the main method to implementation of PBSD have been presented. Site feasibility requirements, conceptual design scopes and basic rules have been proposed. Performance objective‐oriented procedures for preliminary design and seismic performance evaluation have been presented. Suggestions on seismic performance criteria and the evaluation of new TBBC have been made. In order to verify the feasibility of PBSD for application of TBBC, a typical case study has also been conducted. It is believed that PBSD methodology will bring a new era to engineering practices with increased confidence in, and reliability on, seismic performance and safety. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
Performance‐based design method, particularly direct displacement‐based design (DDBD) method, has been widely used for seismic design of structures. Estimation of equivalent viscous damping factor used to characterize the substitute structure for different structural systems is a dominant parameter in this design methodology. In this paper, results of experimental and numerical investigations performed for estimating the equivalent viscous damping in DDBD procedure of two lateral resistance systems, moment frames and braced moment frames, are presented. For these investigations, cyclic loading tests are conducted on scaled moment resisting frames with and without bracing. The experimental results are also used to calibrate full‐scale numerical models. A numerical investigation is then conducted on a set of analytical moment resisting frames with and without bracing. The equivalent viscous damping and ductility of each analytical model are calculated from hysteretic responses. On the basis of analytical results, new equations are proposed for equivalent viscous damping as a function of ductility for reinforced concrete and steel braced reinforced concrete frames. As a result, the new equation is used in direct displacement‐based design of a steel braced reinforced concrete frame. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
Recent developments of resizing algorithms based on displacement participation factor have had a significant impact on drift design of high‐rise buildings. However, most drift design methods based on resizing algorithms have considered only lateral load and overlooked the effect of the vertical load in the calculation of member displacement participation factors. Therefore, in this paper, the practical drift design method of high‐rise buildings is presented in the form of a resizing algorithm by developing product integral modules required for the calculation of displacement participation factors with the consideration of both lateral and vertical loads. The effect of vertical load on the drift design model based on member displacement participation factors is investigated in detail using the verifying example of a 20‐story building structure. The drift design method in combination with the strength design module is then applied to the drift design of a 60‐story high‐rise building structure. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
The nonlinear static procedure (NSP), based on pushover analysis, has become a favourite tool for use in practical applications for building evaluation and design verification. The NSP is, however, restricted to single-mode response. It is therefore valid for low-rise buildings where the behaviour is dominated by the fundamental vibration mode. It is well recognized that the seismic demands derived from the conventional NSP are greatly underestimated in the upper storeys of tall buildings, in which higher-mode contributions to the response are important. This paper presents a new pushover procedure which can take into account higher-mode effects. The procedure, which has been named the consecutive modal pushover (CMP) procedure, utilizes multi-stage and single-stage pushover analyses. The final structural responses are determined by enveloping the results of multi-stage and single-stage pushover analyses. The procedure is applied to four special steel moment-resisting frames with different heights. A comparison between estimates from the CMP procedure and the exact values obtained by nonlinear response history analysis (NL-RHA), as well as predictions from modal pushover analysis (MPA), has been carried out. It is demonstrated that the CMP procedure is able to effectively overcome the limitations of traditional pushover analysis, and to accurately predict the seismic demands of tall buildings.  相似文献   

15.
In order to increase the seismic capacity of multi‐storey planar reinforced concrete (r/c) frames, a new metal frictional device, which the capacity of a restricted rotation around the horizontal axis perpendicular to the vertical frame plane, is presented. The proposed steel device is joined to the four joints of the vertical floor span of the frame via four diagonal steel dual‐hinge bars. During the above restricted rotation, frictional forces develop, due to a suitable synthetic material that is inserted into the rotational frictional connections. When the horizontal relative floor displacement, between two floors, exceeds a desired specific value, then the proposed device locks and the diagonal steel bar becomes fully activated to tension, adding significant additional strength to the frame. This device is installed in a vertical floor span, but it is worth noting that the devices can be placed at floor spans that are not on the same vertical line. The nonlinear numerical (static/dynamic) analyses carried out in the present article, shows that the proposed devices contribute in increase of the lateral stiffness of the frame, the lateral strength of the frame in the inelastic area and the absorption of the inserted seismic energy. Furthermore, this device protects the diagonal steel bars from the buckling or from premature failure of compression. In addition, the proposed device is designed in a way that allows it to operate effectively under large horizontal relative floor displacements due to the cyclic dynamic loads, and can be used instead of the structural r/c walls. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
This study presents an energy approach to the performance‐based seismic design of steel moment resisting frames for the basic safety objective. The seismic demand is expressed in terms of hysteresis energy and its distribution along the height of the frame, based on an associated study. The resistance of a steel moment‐resisting frame to such demand is presented in the form of energy dissipation capacities of critical members, based on the previous experimental studies on full‐scale moment‐connections. An energy‐based design methodology is proposed for performance‐based earthquake resistant design. The proposed design method is examined using design examples and the results are discussed. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

17.
This paper proposes an application of tension‐rod displacement–restraint bracing to prevent story drift amplification in tall steel moment frames. Seismic response analyses of a 20‐story bare steel frame are performed first, revealing that story drift amplification occurs in the upper and lower stories at different times. Characteristics observed for the seismic response of the bare frame suggest the efficacy of the delay action of bracing. Subsequently, seismic response analyses of the 20‐story braced frame with tension‐rod displacement–restraint bracings reveals that the increment of the column axial force by addition of bracing is reduced dramatically by the delay action of bracing. The story rotation angles within partial stories where the story drift amplification occurs in the bare frame are also reduced efficiently by the displacement–restraint bracing. The delay action of bracing influences the floor response acceleration and the residual displacement. Finally, parametric analysis results indicate an appropriate value of the story rotation angle at which the brace action starts.  相似文献   

18.
介绍了GB 50011-2010《建筑抗震设计规范》关于楼层最小地震剪力系数规定的编写背景,及其与其他国家规范的相关规定的区别。论述了结构的最小地震剪力系数(剪重比)与设防烈度、场地特征周期、结构周期、振型、阻尼比等参数的关系。列举了位于不同地区(沿海和内地)、不同高度的超高层建筑设计,说明由于地震作用和风荷载不同,计算的楼层地震剪力系数、层间位移及墙、柱等构件轴压比也会不同。结构对地震作用与风荷载的反应不同,设计应区别对待。只要设计合理,大多数结构的最小地震剪力系数可以满足规范要求。对一幢超高层建筑结构进行全面剖析,综合比较,论证了各类参数之间的关系,证明我国规范关于楼层最小地震剪力系数的规定不但是必要的,也是合理可行的。  相似文献   

19.
Current building codes aim to ensure the acceptable performance of structures implicitly. Because these provisions are empirically developed for low‐ to medium‐rise buildings, their applicability to high‐rise building warrants further investigation. In this paper, the effect of design drift limit on the seismic performance of reinforced concrete dual high‐rise buildings is considered. Nine buildings are designed for 3 drift limits: the code limit (i.e., 2%), one that is lower than the code limit (i.e., 1.5%), and one that is higher than the code limit (i.e., 3%). For each drift limit, buildings of 3 heights (20, 25, and 30 stories) are designed. Finite element models are constructed in OpenSees, and incremental dynamic analysis is performed. The results are used to develop probabilistic seismic demand models, where model parameters are determined using maximum likelihood estimation to incorporate equality and censored data. Reliability analysis using probabilistic demand models is conducted to derive seismic fragility and demand hazard curves. In addition, the collapse performance of the drift limits is evaluated using the Federal Emergency Management Agency (FEMA) P695 procedure. The study results show that the design drift limit affects the building's seismic performance, and the effect depends on the performance level considered. Moreover, from a structural integrity perspective, a larger design drift limit does not induce a significantly higher risk and might yield a more cost‐effective design.  相似文献   

20.
The effects soil‐structure interaction (SSI) and lateral design load‐pattern are investigated on the seismic response of steel moment‐resisting frames (SMRFs) designed with a performance‐based plastic design (PBPD) method through a comprehensive analytical study on a series of 4‐, 8‐, 12‐, 14‐, and 16‐story models. The cone model is adopted to simulate SSI effects. A set of 20 strong earthquake records are used to examine the effects of different design parameters including fundamental period, design load‐pattern, target ductility, and base flexibility. It is shown that the lateral design load pattern can considerably affect the inelastic strength demands of SSI systems. The best design load patterns are then identified for the selected frames. Although SSI effects are usually ignored in the design of conventional structures, the results indicate that SSI can considerably influence the seismic performance of SMRFs. By increasing the base flexibility, the ductility demand in lower story levels decreases and the maximum demand shifts to the higher stories. The strength reduction factor of SMRFs also reduces by increasing the SSI effects, which implies the fixed‐base assumption may lead to underestimated designs for SSI systems. To address this issue, new ductility‐dependent strength reduction factors are proposed for multistory SMRFs with flexible base conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号