首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
姜勇刚  张长瑞  曹峰  王思青 《硅酸盐学报》2007,35(5):537-540,545
采用先驱体转化法制备了2.5维石英纤维织物增强氮化物陶瓷基复合材料.对所制备材料的力学性能、热物理性能、烧蚀性能和断口显微形貌进行了研究.研究了裂解温度及纤维体积含量对复合材料抗弯强度的影响.结果表明:该材料具有较好的力学性能和优良的抗烧蚀性能,随着纤维体积含量的提高,复合材料的抗弯强度随之提高.当纤维体积分数为48%,裂解温度为800℃时,复合材料显示出最高径向抗弯强度(134.6MPa).烧蚀过程中无分层和剥离现象,表面平整,线烧蚀率为0.038mm/s.材料的增韧机制是基体与纤维界面的脱粘和纤维的拔出吸收了大量的能量.  相似文献   

2.
纤维增强陶瓷基复合材料概述   总被引:2,自引:0,他引:2  
史国普 《陶瓷》2009,(1):16-20
连续纤维增强陶瓷基复合材料是最有前途的高温结构材料之一,以其优异的高韧性、高强度得到世界各国的高度重视。综述了纤维增韧陶瓷基复合材料的选材原则、主要的增韧机理、制备方法以及目前主要的界面改性方法。得到以下结论:纤维的选择必须满足工作环境的要求,纤维与基体之间要在热力学上相匹配;主要的增韧机理为载荷转移、微裂纹增韧、裂纹偏转、纤维脱粘和纤维拔出;复合材料的主要制备方法是热压法、CVI法和聚合物浸渍裂解法;目前最有效的界面改性方法是纤维表面涂层。用氧化物纤维作为增韧体,研究更加简单适用于大规模生产的制备方法,研究更加简单的涂层工艺是今后研究纤维增强陶瓷基复合材料的重点。  相似文献   

3.
以针刺石英纤维预制体、硅溶胶等为原料,采用溶胶-凝胶的方法制备了石英纤维增强石英陶瓷复合材料。研究了热处理温度对纤维形貌和纤维布拉伸性能的影响以及烧结温度对复合材料弯曲强度的影响。结果表明:石英纤维预制体经丙酮浸泡烘干后,经450℃热处理2h,可以完全去除纤维表面的浸润剂;复合材料经450℃烧结2h,材料弯曲强度为78.5MPa,拉伸强度为31.8MPa,抗压强度为88.8MPa,可以达到天线罩材料力学性能的要求。  相似文献   

4.
石英纤维增强氰酸酯树脂基复合材料性能研究   总被引:2,自引:0,他引:2  
研究了QF210石英纤维增强新型的改性氰酸酯树脂基复合材料的耐热性、力学性能和介电性能,结果表明5528A/QF210复合材料具有优良的力学性能和优异的介电性能,可在150℃下使用。尤其是5528A/QF210复合材料的介电性能具有极好的频率稳定性,适合作为宽频高透波材料。  相似文献   

5.
连续纤维增强陶瓷基复合材料界面研究进展   总被引:1,自引:0,他引:1  
在陶瓷基复合材料中引入高强陶瓷纤维的目的是为了增强陶瓷的断裂韧性,纤维与基体的界面是决定CMC韧性的关键因素。国内外许多专家和机构研究重点主要集中于连续纤维增强陶瓷基复合材料的界面,包括纤维与基体的化学相容性和热物理相容性,以及用TEM、HRTEM、SADP、AEM、声学显微法、EDX等微观测试手段研究不同体系的界面形成机理。本文对上述界面研究概况进行了综述,并简述了界面设计原则和近年来计算机技术在界面研究中的应用情况。指出,连续纤维增强陶瓷基复合材料界面研究将一直是复合陶瓷基复合材料界研究的重点和难点。  相似文献   

6.
7.
8.
李杰 《陶瓷》1989,(2):48-51
本文综述了纤维和晶须复合材料的增韧机理、生产工艺及性能。  相似文献   

9.
通过热压注法制备了石英纤维增强的氧化硅基陶瓷型芯,随着石英纤维含量增加,陶瓷型芯气孔率和溶蚀性呈现出指数型增长;型芯的弯曲强度和抗蠕变性能都呈现出先增强后减弱的变化趋势。石英纤维与基体间的界面,在裂纹偏转和纤维拔出过程中吸收能量,使型芯表现出较高的弯曲强度;石英纤维在碱液中活性较高,因此保留了氧化硅基陶瓷型芯良好的溶蚀性。石英纤维含量为6%时,陶瓷型芯表现出了很好的综合性能,显气孔率为34.1%,常温和1550℃的弯曲强度分别为28.5 MPa和21.8 MPa,高温蠕变为0.26 mm,溶蚀率为0.62 g/min,很好地满足了高温合金浇注对型芯的要求。  相似文献   

10.
连续纤维增强陶瓷基复合材料(CFRCMCs)既保留了单体陶瓷材料高强度﹑高硬度、耐高温和耐腐蚀等的特性,同时又能提高陶瓷基体的韧性,改善其综合力学性能,在高温领域表现优异,现已被广泛应用到火箭发动机喷管、导弹天线罩等领域,是高新技术材料领域的一个重要分支,而纤维增强氧化物基复合材料又是CFRCMCs领域的一重要分支。本文整合当前的研究进展,针对以ZrO2作为复合材料的基体,重点介绍采用四种不同的增强纤维(碳纤维、碳化硅纤维、氧化硅纤维、氧化铝纤维)增强ZrO2复合材料的性能、取得最新进展,以及主要的制备工艺,并展望未来,指出其存在的问题和未来的发展趋势。  相似文献   

11.
碳化硅纤维增强碳化硅陶瓷基(SiC/SiC)复合材料具有轻质、耐高温、抗氧化的优异特性,在航空领域,如航空发动机的热端构件、高温结构功能一体化构件,航天及空天飞行器热防护结构部件、动力系统热端部件等领域具有广泛的应用前景,受到美国、欧洲、日本等国研究人员的广泛关注。本文从组成、制备工艺、加工工艺和考核应用等方面,综述了SiC/SiC复合材料的国内外研究进展,并指出了目前面临的问题和机遇。  相似文献   

12.
结合PBO纤维增强树脂基复合材料优异的介电性能和石英纤维增强树脂基复合材料优异的力学性能,本文设计了石英纤维与PBO纤维体积比55∶45混合编织,同时采用空气气氛对混编纤维表面进行等离子体处理,等离子体处理工艺为400W/10min,制备的氰酸酯树脂复合材料力学性能较纯PBO纤维增强氰酸酯树脂复合材料具有更加优异的性能,弯曲强度提高了62%,层间剪切强度提升了231%,大大加快了PBO纤维复合材料在透波复合材料领域的应用步伐。  相似文献   

13.
通过考虑纳米纤维与共晶界面的相互作用,利用四相模型推导出共晶基陶瓷复合材料中三相胞元内的应力分布规律;根据体积平均应变,得到共晶基陶瓷复合材料的有效柔度增量;由复合材料远场应力边界条件获得棒状共晶体内基体、界面和纳米纤维内的局部应力场.结果表明:棒状共晶体内的局部应力场与共晶体内各组分的刚度和体积含量以及夹杂和界面相的形状有关.由于共晶界面的强约束效应,基体分担的应力数值明显减小,所以共晶界面使共晶基陶瓷复合材料得到了强化.  相似文献   

14.
1FRC的特征所谓氨化硅、碳化硅、蓝晶石或多铝红柱石的结构用陶瓷,因为比金属强度还高,而且轻质、耐热性、耐摩耗性都优异,所以被用作高温结构材料很使人注目。另一方面,因为陶瓷是破坏韧性低的脆性材料,所以正在进行研究对它改善的方法。作为改善手段来说,有控表1材料的强度和破坏韧性材料强度破坏韧性(MPa)(MPa·m”1/2)“关于陶瓷、长纤维增强复合材料,强度为弯曲强度;关于金属,强度指屈服应力值。制材料结构,粒子分散增强或晶须增强等方法。长纤维增强陶瓷复合材料(以下简称FRC)也同这些材料一样,为了实现陶瓷的…  相似文献   

15.
无机纤维增强陶瓷复合材料   总被引:4,自引:0,他引:4  
陶瓷材料的脆性可通过纤维增强来克服,由此可提高陶瓷材料的强度及韧性。影响纤维增强的二个重要参数是纤维加入量和纤维长径比。本文从理论和实验两方面对此进行研究,得出最佳纤维加入量为5%,长径比为40~80。物化相容性是决定纤维增强增韧的关键。纤维的加入将引起基体粘度的增加。要制得高强度高韧性的复合材料,必须选用高强度高模量的纤维;纤维与基体热膨胀应相匹配;纤维与基体间应尽力避免化学反应;纤维与基体间的界面结合以适中为宜。文章对上述问题都进行了较为详尽的探讨。  相似文献   

16.
用玄武岩纺制的增强纤维是今年4月巴黎JEC复合材料展销上展出众多奇特的新开发材料之一,这次展销会展出的新型增强材料还有高强度聚丙烯纤维和新型碳纤维和3D织物。  相似文献   

17.
纤维增强玻璃基复合材料   总被引:1,自引:0,他引:1  
  相似文献   

18.
《硅酸盐学报》2021,49(9):1869-1877
作为连续纤维增强陶瓷基复合材料的重要组成部分,界面相直接影响着复合材料的整体性能,因而其一直是该领域的重点研究方向之一。本工作在阐明界面相的基本功能和要求的基础上,介绍了目前备受关注的LaPO_4、Y_2Si_2O_7、CaWO_4、AlPO_4和MAX相等新型界面相的研究现状,从其晶体结构、热力学性能、制备方法及其在纤维增强复合材料中的抗氧化效果等方面进行了分析和讨论,最后展望了未来新型界面相的发展方向。  相似文献   

19.
系统地介绍了纤维(晶须)增韧陶瓷基复合材料的类型、制备工艺、性能特点和增韧机制,指出了这类材料的研究课题和发展方向;结果表明:纤维(晶须)增韧陶瓷基复合材料与其他结构陶瓷材料相比,是近年来发展起来的高性能工程结构材料,也是最有希望得到实际应用的材料。  相似文献   

20.
陶瓷基复合材料的纤维增韧   总被引:2,自引:0,他引:2  
系统地介绍了纤维(晶须)增韧陶瓷基复合材料的类型,制备工艺,性能特点和增韧机制,指出了这类材料的研究课题和发展方向;结果表明:纤维(晶须)增韧陶瓷基复合材料与其他结构陶瓷材料相比,是近年来发展起来的高性能工程结构材料,也是最有希望得到实际应用的材料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号