共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
基于优选组合预测技术的中长期负荷预测 总被引:4,自引:0,他引:4
中长期电力负荷预测是电力系统规划的基础和重要前提。该文提出优选组合预测技术分为模型筛选和组合模型筛选两大部分。单个模型的筛选方法选择改进的灰色关联度指标和冗余校验方法,改进的灰色关联度指标更加注重预测发展趋势预测的精准度,冗余校验是对已经筛选出来的模型进行冗余检查。选择5种组合预测方法,较大程度兼容组合预测的实用性和准确性。改进的预测误差指标体系验证了优选组合预测技术在中长期负荷预测中的合理性。 相似文献
4.
基于IOWA-AHP的中长期负荷组合预测法 总被引:1,自引:0,他引:1
针对中长期电力负荷预测的特点,提出一种基于诱导有序加权平均(IOWA)算子和层次分析法(AHP)的中长期负荷组合预测法.首先通过各单项预测模型在历史年内各个时点的诱导值大小按顺序赋权,以误差平方和为优化目标求出IOWA加权系数;然后利用层次分析法综合考虑拟合精度、发展一致性和模型可信度,求出各单项预测模型在预测年内各个时点的诱导值,进而预测出负荷值.该方法的特点是:组合预测加权系数与单项预测模型无关,而与其在各个时点的诱导值密切相关;引入专家经验,减小了不确定因素的干扰.实际算例验证了该方法的可行性和有效性. 相似文献
5.
6.
在负荷预测的模型组合过程中,主要是根据历史数据的趋势恰当选择模型,再根据模型特点选择权重分配方法。针对灰色关联度满足要求的几种模型预测值分化较大的问题,从负荷数据的增长率无后效性这一特点出发,通过对原始数据增长率的分析,采用马尔可夫链划分区间,从几种满足精度要求的模型中筛选出两种进行组合预测,通过方差—协方差方法分配权重。经过该种方法的筛选,不仅可以更准确地选择组合预测模型的类型,而且具有较高精度。 相似文献
7.
8.
9.
变权组合预测是负荷预测研究领域的热点,预测的关键是确定加权系数的原则。引入可信赖域α,改进了预测精度矩阵,推导了单个预测和组合预测的k阶改进预测有效度。通过拟合样本因子β,区分了样本区和预测区的加权系数。给出了基于一阶和二阶改进预测有效度最优级原则的中长期负荷组合预测模型。实际算例说明了预测模型的有效性。 相似文献
10.
中长期电力负荷的组合预测法 总被引:3,自引:0,他引:3
组合预测法能较大限度地利用各种预测样本信息,有效地减少单个预测模型建立过程中一些环境随机因素的影响,提高预测精度.通过对灰色预测法、等维新息法、回归分析法的研究,先由原始数列建立灰色预测模型,预测出近期数据,再运用等维新息思想,把灰色模型的近期预测值添加到原始数列中,生成组合的数列,由新生成的组合数列建立回归模型,预测... 相似文献
11.
变权组合预测是负荷预测研究领域的热点,预测的关键是确定加权系数的原则.引入可信赖域α,改进了预测精度矩阵,推导了单个预测和组合预测的k阶改进预测有效度.通过拟合样本因子β,区分了样本区和预测区的加权系数.给出了基于一阶和二阶改进预测有效度最优级原则的中长期负荷组合预测模型.实际算例说明了预测模型的有效性. 相似文献
12.
13.
传统中长期电力负荷组合预测方法在确定权系数时,由于没能充分考虑各单一预测模型拟合值与历史实际值之间的多种误差信息,而使预测结果不够理想.为此,选取多种误差作为评价单一模型优劣的指标,引入多目标系统模糊优选理论,结合熵权法客观分配各种误差指标的权重,在全面考虑多种误差信息的情况下,通过求取各单一模型预测精度对“优”的隶属... 相似文献
14.
电力负荷预测能对电网的合理规划起到指导和决策作用.本文使用数据挖掘技术对南通地区进行中长期负荷预测,首先通过聚类分析对南通地区所有馈线数据进行分类,并运用相关性分析和灰色关联分析定量地分析外界因素对负荷变化的影响程度;其次使用影响性强的因素作为神经网络的输入,建立基于聚类的径向基(RBF)神经网络模型,得到负荷预测结果;最后与不考虑聚类仅使用RBF神经网络的预测模型进行对比,实验结果表明,基于聚类的RBF神经网络模型更先进,显著提高了负荷预测精度,达到了保障供电可靠性的目的. 相似文献
15.
16.
基于支持向量机的中长期电力负荷组合预测 总被引:5,自引:0,他引:5
影响中长期负荷的因素多,随机性强,单一预测方法很难满足不同情况的预测需要,组合预测能较好地解决单一模型的不足,但现有组合预测模型主要基于经验风险最小,预测精度受组合模型的限制.本文提出一种基于最小二乘支持向量机的中长期负荷组合预测模型,该模型利用结构风险最小化原则代替传统的经验风险最小化,充分挖掘原始数据和单一预测模型的信息,以单一模型的预测数据作为组合预测样本,选择多项式核函数的最小二乘支持向量机进行组合预测.实际算例表明,本文提出的组合模型预测平均误差仅为1.719%,具有良好的可行性和有效性. 相似文献
17.
18.
针对电力系统中长期负荷预测的特点,分别应用灰色系统理论及回归分析方法对中长期负荷进行了预测研究。然后基于D-S证据理论对两种负荷预测方法进行了组合预测,提出了一种新的电力负荷组合预测方法。并通过与两种预测方法的仿真验证对比,证明了本方法具备较高的精度及较强的可操作性,可为电网中长期规划提供有效的借鉴指导。 相似文献
19.
将人工蜂群(ABC)算法应用到中长期电力负荷预测中,通过与组合预测模型相结合,对组合预测目标函数进行优化权重求解。另外针对该算法的早期收敛速度慢、后期容易陷入局部最优的缺点,通过引入扰动项,并进行最坏蜜源替代予以解决。实例分析证明该改进算法收敛速度快,全局寻优能力强。利用它求得的组合预测值,相对于单一模型的预测结果,精度有较大的提高,说明该改进算法应用到中长期电力负荷预测中是可行的。 相似文献