首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yield response of dryland wheat to fertilizer N application in relation to components of seasonal water (available soil moisture and rainfall) and residual farm yard manure (FYM) was studied for five years (1983–84 to 1987–88) on a maize-wheat sequence on sandy loam soils in Hoshiarpur district of Punjab, India. Four rates of N viz. 0, 40, 60 and 80 kg ha–1 in wheat were superimposed on two residual FYM treatments viz. no FYM (F0) and 15 t ha–1 (F15) to preceding maize. FYM application to maize increased the residual NO3-N content by 19–30 kg ha–1 in the 180 cm soil profile. For a given moisture distribution, F15 increased attainable yields. Over the years, F15 increased wheat yield by 230 to 520 kg ha–1. Response to fertilizer N was lower in FYM amended plots than in unamended plots. Available soil moisture at wheat seeding and amount and distribution of rainfall during the vegetative and the reproductive phases of crop development affected N use efficiency by wheat. Available soil moisture at seeding alone accounted for 50% variation in yield. The residual effect of FYM on wheat yield could be accounted for by considering NO3-N in 180 cm soil profile at seeding. The NO3-N and available soil moisture at wheat seeding along with split rainfall for two main phases of crop development and fertilizer N accounted for 96% variation in wheat yield across years and FYM treatments.  相似文献   

2.
Field studies on the substitution of N and P fertilizers with farm yard manure (FYM) and their effect on the fertility status of a loamy sand soil in rice—wheat rotation are reported. The treatments consisted of application of 12 t FYM ha–1 in combination with graded levels of N and P. Application of fertilizer N, FYM and their different combinations increased the rice yield significantly. There was no significant response to P application. The magnitude of response to the application of 12 t FYM and its combined use with each of 40 kg and 80 kg N ha–1 was 0.7, 2.2 and 3.9 t ha–1 respectively. Application of 120 kg N ha–1 alone increased the yield by 3.9 t ha–1, and was comparable to rice yield obtained with 80 kg N and 12 t FYM ha–1. This indicated that 12 t FYM ha–1 could be substituted for 40 kg N as inorganic fertilizer in rice. In addition FYM gave residual effects equivalent to 30 kg N and 13.1 kg P ha–1 in the succeeding wheat. The effect of single or combined use of inorganic fertilizers and FYM was significantly reflected in the build up of available N, P, K and organic carbon contents of the soil. The relationship for predicting rice yield and nutrients uptake were also computed and are discussed.  相似文献   

3.
Farmyard manure (FYM) applied to rice-growing soils can substitute for industrial fertilizers, but little is known about the influence of FYM on the effectiveness and optimal management for industrial N fertilizers. A field experiment was conducted in northern Vietnam on a degraded soil in the spring season (February to June) and summer season (July to November) to determine the effect of FYM on optimal timing for the first application of urea. The experimental design was a randomized complete block with two rates of basal incorporated FYM (0 or 6 Mg ha–1) in factorial combination with two timings of the first application of 30 kg urea-N ha–1 (basal incorporated before transplanting or delayed until 14 to 16 d after transplanting). The FYM was formed by composting pig manure with rice straw for 3 months. Basal incorporation of FYM, containing 23 kg N ha–1, increased rice grain yield in both seasons. The yield increase cannot be attributed to reduced ammonia loss of applied urea-N, because FYM did not reduce partial pressure of ammonia (pNH3) following urea application in either season. Basal and delayed applications of urea were equally effective in the absence of FYM, but when FYM was applied rice yields in both seasons were higher for delayed (mean = 3.2 Mg ha–1) than basal (mean = 2.9 Mg ha–1) application of urea. Results suggest that recommendations for urea timing in irrigated lowland rice should consider whether farmers apply FYM.  相似文献   

4.
Poultry manure applied alone or in combination with urea at different N levels was evaluated as a N source for wetland rice grown in a Fatehpur loamy sand soil. Residual effects were studied on wheat which followed rice every year during the three cropping cycles. In the first year, poultry manure did not perform better than urea but by the third year, when applied in quantities sufficient to supply 120 and 180 kg N ha–1, it produced significantly more rice grain yield than the same rates of N as urea. Poultry manure sustained the grain yield of rice during the three years while the yield decreased with urea. Apparent N recovery by rice decreased from 45 to 28% during 1987 to 1989 in the case of urea, but it remained almost the same (35, 33 and 37%) for poultry manure. Thus, urea N values of poultry manure calculated from yield or N uptake data following two different approaches averaged 80, 112 and 127% in 1987, 1988 and 1989, respectively. Poultry manure and urea applied in 1:1 ratio on N basis produced yields in between the yields from the two sources applied alone. After three cycles of rice-wheat rotation, the organic matter in the soil increased with the amount of manure applied to a plot. Olsen available P increased in soils amended with poultry manure. A residual effect of poultry manure applied to rice to supply 120 or 180 kg N ha–1 was observed in the wheat which followed rice and it was equivalent to 40 kg N ha–1 plus some P applied directly to wheat.  相似文献   

5.
Maize is the primary food crop grown by farmers in the coastal savanna region of Togo and Benin on degraded (rhodic ferralsols), low in soil K-supplying capacity, and non-degraded (plinthic acrisols) soils. Agronomic trials were conducted during 1999–2002 in southern Togo on both soil types to investigate the impact of N and P fertilization and the introduction of a mucuna short fallow (MSF) on yield, indigenous N supply of the soil, N recovery fraction and internal efficiency of maize. In all plots, an annual basal dose of 100 kg K ha–1 was applied to the maize crop. Maize and mucuna crop residues were incorporated into the soil during land preparation. Treatment yields were primarily below 80% of CERES-MAIZE simulated weather-defined maize yield potentials, indicating that nutrients were more limiting than weather conditions. On degraded soil (DS), maize yields increased from 0.4 t ha–1 to 2.8 t ha–1 from 1999 to 2001, without N or P application, in the absence of MSF, with annual K application and incorporation of maize crop residues. Application of N and P mineral fertilizer resulted in yield gains of 1–1.5 t ha–1. With MSF, additional yield gains of between 0.5 and 1.0 t ha–1 were obtained at low N application rates. N supply of the soil increased from 10 to 42 kg ha–1 from 1999 to 2001 and to 58 kg N ha–1 with MSF. Application of P resulted in significant improvements in N recovery fraction, and greatest gains were obtained with MSF and P application. MSF did not significantly affect internal N efficiency, which averaged 45 kg grain (kg N uptake)–1. On non-degraded soils (NDS) and without N or P application, in the absence of MSF, maize yields were about 3 t ha–1 from 1999 to 2001, with N supply of the soil ranging from 55 to 110 kg N ha–1. Application of 40 kg P ha–1 alone resulted in significant maize yield gains of between 1.0 (1999) and 1.5 (2001) t ha–1. Inclusion of MSF did not significantly improve maize yields and even reduced N recovery fraction as determined in the third cropping year (2001). Results illustrate the importance of site-specific integrated soil fertility management recommendations for the southern regions of Togo and Benin that consider indigenous soil nutrient-supplying capacity and yield potential. On DS, the main nutrients limiting maize growth were N and probably K. On NDS, nutrients limiting growth were mainly N and P. Even on DS rapid gains in productivity can be obtained, with MSF serving as a means to allow farmers with limited financial means to restore the fertility of such soils. MSF cannot be recommended on relatively fertile NDS.  相似文献   

6.
Field trials were carried out to study the fate of15N-labelled urea applied to summer maize and winter wheat in loess soils in Shaanxi Province, north-west China. In the maize experiment, nitrogen was applied at rates of 0 or 210 kg N ha–1, either as a surface application, mixed uniformly with the top 0.15 m of soil, or placed in holes 0.1 m deep adjacent to each plant and then covered with soil. In the wheat experiment, nitrogen was applied at rates of 0, 75 or 150 kg N ha–1, either to the surface, or incorporated by mixing with the top 0.15 m, or placed in a band at 0.15 m depth. Measurements were made of crop N uptake, residual fertilizer N and soil mineral N. The total above-ground dry matter yield of maize varied between 7.6 and 11.9 t ha–1. The crop recovery of fertilizer N following point placement was 25% of that applied, which was higher than that from the surface application (18%) or incorporation by mixing (18%). The total grain yield of wheat varied between 4.3 and 4.7 t ha–1. In the surface applications, the recovery of fertilizer-derived nitrogen (25%) was considerably lower than that from the mixing treatments and banded placements (33 and 36%). The fertilizer N application rate had a significant effect on grain and total dry matter yield, as well as on total N uptake and grain N contents. The main mechanism for loss of N appeared to be by ammonia volatilization, rather than leaching. High mineral N concentrations remained in the soil at harvest, following both crops, demonstrating a potential for significant reductions in N application rates without associated loss in yield.  相似文献   

7.
A 2-year field experiment was conducted to study the effects of the nitrification inhibitors dicyandiamide (DCD) and neem cake on the efficiency of applied prilled urea nitrogen in a maize-wheat cropping system. Prilled urea (PU), neem cake coated urea (NCU) and DCD blended urea (DCDU) were applied to maize at two levels (60 and 120 Kg N ha–1) and two methods (all preplant and split) of N application along with a no-nitrogen control and their relative residual effect was studied on succeeding wheat grown with three levels of N as PU.In 1990 maize responded well to N up to 60 kg N ha–1; at this level PU increased maize yield by 1.03 t ha–1, whereas NCU and DCDU increased maize yield by 1.55 and 1.18 t ha–1 over the control, which was equivalent to an application of 127 and 94 kg N ha–1 as PU, respectively. Furthermore, when the results were averaged over two years of study, residual N from the application of NCU and DCDU at 60 kg N ha–1 left after maize cropping increased the grain yield of the succeeding wheat crop grown with 60 kg N ha–1 as PU by 1.97 and 1.68 t ha–1, respectively, over a no nitrogen control or 60 kg N ha–1 as PU applied to the maize. This was equal to an application of 96 and 82 kg N ha–1 as PU to wheat.Thus, neem cake increased the efficiency of urea N applied to maize and benefits were also seen in the succeeding wheat yield in the maize-wheat cropping system.  相似文献   

8.
A field experiment was conducted on an alkali soil to evaluate the direct and the residual effect of six levels of zinc i.e. 0, 2.25, 4.5, 9.0, 18.0 and 27.0 kg Zn ha–1 added either once to the first crop only or continuously to each crop on the growth, yield and chemical composition of plants grown in a rice-wheat cropping sequence. The soils were amended with gypsum applied at the uniform rate of 14 t ha–1. Zinc was supplied as zinc sulphate. Application of zinc at the rate of 2.25 kg ha–1 to both rice and wheat crops or an annual application of 4.5 kg Zn ha–1 only to rice was found optimum for rice-wheat sequence. Higher zinc applications increased the availability of zinc in the soil and its content in the plants but did not increase crop yield. DTPA extractable zinc build up was more for zinc applied at the rate of 2.25 kg ha–1 to each crop compared to a single zinc application of equivalent amount. Results of these studies have shown that continuous Zn application up to 27 kg Zn ha–1 to each crop did not induce nutrient imbalances and had no adverse effect on crop yield.  相似文献   

9.
Nitrogen response of maize under temporary flooding   总被引:1,自引:0,他引:1  
The adverse effect of temporary flooding on maize (Zea mays L.) yields and the nitrogen management required to mitigate the effect of flooding were studied for five years in field experiments on Choa sandy loam soil.Maize yields decreased with increase in duration of flooding and with decrease in the age of the crop at the time of flooding. Flooding periods exceeding 48 hours caused significant crop damage. The loss in yield on account of flooding was, however, less in 40-day old crops. A 24 hours flooding decreased grain yield by 17.7 and 3.9 per cent in 20-day and 40-day old crops respectively. Maximum yield loss amounted to 1.23 t ha–1 of grains with 72 hours of flooding of 20-day old crop indicating that a younger crop is more prone to the deleterious effect of flooding.The nitrogen content of grains decreased significantly with increase in flooding period. A supplemental dose of 7 kg N ha–1 as urea spray significantly increased grain yield. Soil application of supplemental nitrogen at the rate of 14 or 20 kg N ha–1 enhanced the maize yield by 0.7 to 0.9 t ha–1 under temporary flooded conditions. Spraying with urea solution increased nitrogen removed by the crop.Successive increments of 60 kg N ha–1 gave an additional yields of 1.23, 1.01 and 0.41 t ha–1 over the crop that received no nitrogen. Flooded maize responded to even higher rates of N fertilization than the dose of 120 kg N ha–1 which is recommended in this region.  相似文献   

10.
Integrated soil management with leguminous cover crops was studied at two sites in the northern Guinea savanna zone of northern Nigeria, Kaduna (190 day growing season) and Bauchi (150 days). One-year planted fallows of mucuna, lablab, and crotalaria were compared with natural grass fallow and cowpea controls. All treatments were followed by a maize test crop in the second year with 0, 30, or 60 kg N ha–1 as urea. Above ground legume residues were not incorporated into the soil and most residues were burned early in the dry season at the Kaduna site. Legume rotation increased soil total N, maize growth in greenhouse pots, and dry matter and N accumulation of maize. Response of maize grain yield to 30 kg N ha–1 as urea was highly significant at both sites and much greater than the response to legume rotation. The mean N fertilizer replacement value from legume rotation was 14 kg N ha–1 at Kaduna and 6 kg N ha–1 at Bauchi. W ith no N applied to the maize test crop, maize grain yield following legume fallow was 365 kg ha–1 higher than natural fallow at Bauchi and 235 kg ha–1 higher at Kaduna. The benefit of specific legume fallows to subsequent maize was mostly related to above ground N of the previous legume at Bauchi, where residues were protected from fire and grazing. At Kaduna, where fallow vegetation was burned, maize yield was related to estimated below ground N. The results show that legume rotation alone results in small maize yield increases in the dry savanna zone.  相似文献   

11.
In an effort to establish an optimum combination of water and nitrogen for winter wheat a field investigation was carried out on a coarse loamy sand soil during 1984–85 and 1985–86 to assess effects of irrigation regime (IR) and N application on yield, water use and N uptake. The treatments compromised all combinations of three irrigation regimes (IR) based on ratios of irrigation water to cumulative pan evaporation viz.1.2 (I-1), 0.9 (I-2) and 0.6 (I-3) and four rates of N, viz. 0, 60, 120 and 180 kg ha–1. Grain yield increased with increase in frequency of irrigation. In spite of wide differences in weather during the two years, scheduling of irrigation at IW/CPE = 1.2 gave the highest wheat yield on the coarse-textured soil. During 1984–85, the rainless year, grain yield under I-1 was 20 and 32 per cent higher than I-2 and I-3, respectively. With increasing N rate the yield and water use efficiency increased progressively upto 180 kg N under I-1 and upto 120 kg N ha–1 under I-2 and I-3 regimes. During 1985–86, the wet year, grain yield response to IR was relatively low. Irrespective of IR, yield increased progressively upto 180 kg N ha–1 during the wet year. Irrigation water regimes and N application also influenced leaf area index and root growth of wheat. The yield of unfertilized wheat was relatively less affected by seasonal rainfall and IR.Both N uptake and grain yield of wheat were found to increase linearly with increase in water use. Water use efficiency was highest under I-1 regime at all levels of N in the dry season of 1984–85 and under I-3 regime in the wet season of 1985–86. Increase in N uptake with increasing N rates was significantly higher under I-1 than I-2 and I-3 regimes. The N use efficiency being maximum at 60 kg N ha–1, decreased at higher N levels irrespective of IR.  相似文献   

12.
Results of an eight-year study on long-term effect of N and P application in a pearlmillet—wheat sequence is reported. There was little or no residual effect of N on any of the crops. Pearlmillet needed 70 to 80 kg N and wheat required more than 120 kg N ha–1 every year for optimum grain yield. There was no soluble P build up in soil by continuous P application. Fertilizing wheat every year with 19 kg P and pearlmillet with 13 kg P ha–1 is considered optimum.Continuous cropping leading to a production of 216 tonnes of biomass ha–1 in 17 crops and use of high analysis N (urea) and P (triple superphosphate) fertilizers had not impaired the K and Zn supplying capacity of these alluvial soils containing illite clay minerals. The experiment is being continued to monitor the productivity of the soil as affected by continuous cropping.  相似文献   

13.
Field experiments were conducted at 32 locations, chosen for their wide range in DTPA extractable Zn, to determine the critical deficiency level of Zn for predicting response of wheat to Zn application. Soil application of 5.6 kg Zn ha–1 significantly increased the grain yield in deficient soils. Soil extractable Zn was significantly related with per cent grain response and absolute grain yield. Both the graphical and statistical methods of Cate and Nelson indicated the critical level to be 0.75 mg kg–1 soil of DTPA extractable Zn. This level gave a predictability value of 82 per cent.  相似文献   

14.
In degraded soils, establishment of soil-improving legumes can be problematic and requires investment of labour and other resources. We investigated various aspects of managing herbaceous legumes in farmers’ fields in Bukoba District, Tanzania. Biomass and N accumulation by Crotalaria grahamiana was 1.1 Mg ha−1 and 34 kg N ha−1 when established without farmyard manure (FYM) and 3.0 Mg ha−1 and 95 kg N ha−1 when established with 2 Mg FYM ha−1, and incorporation of the biomass gave an increment of 700 kg ha−1 of grain in the subsequent maize crop. Maize grain yield at different application rates of Tephrosia candida residues ranged from 1.4 to 3.3 Mg ha−1 and from 2.0 to 2.8 Mg ha−1 in the high and low rainfall zone, respectively. Application of tephrosia biomass at a rate of 2 Mg ha−1 had no significant effect on maize yield whereas rates of 4, 6 and 8 Mg ha−1 gave comparable yields. Apparent N recovery efficiencies at all rates of tephrosia residues were maximally 27 and 13% for the high and low rainfall zones, respectively. Mulching with Mucuna pruriens suppressed weeds by 49 and 68% and increased maize yield by 57 and 103% compared with the weedy fallow in the respective zones. Incorporated residues had a weaker effect on suppressing weeds and poor labour productivity (2 l and 36 kg grain person-day−1) compared with mulched residues (32 and 52 kg grain person-day−1) in the high and low rainfall zone, respectively. These results indicate that if well managed, legume residues have the potential to increase yields of subsequent maize crops on degraded soils.  相似文献   

15.
To reduce severe soil degradation associated with agriculture an intensified land-use system is being promoted in West African countries. Most soils of the West African savanna zones are so poor that the efficiency of mineral fertilizers, if applied, is very low. For this reason and because of their high cost and unavailability, many small-scale farmers are reluctant to apply fertilizer. This work investigates a fertilizer management strategy using integrated soil fertility management with a leguminous cover crop (mucuna) so as to improve the soil fertility and increase the use efficiency of fertilizer. The experiment was conducted in the coastal savanna of Togo at Djaka Kopé. The aim was to evaluate the effectiveness of mucuna short fallow (MSF) in increasing maize grain yield through an improved use efficiency of mineral fertilizer. A 2-year maize–mucuna relay intercropping system was compared with continuous sole maize cropping. Fertilizer treatments were factorial combinations of 0, 50 and 100 kg nitrogen (N) ha–1 and 0, 20 and 40 kg phosphorus (P) ha–1. While maize grain yield was significantly increased by N fertilization, P did not show any important effect on grain yield. With no N and P applied, grain yield after MSF was on average 40% (572 kg ha–1) higher than without. The response to N was much greater than the response to MSF, indicating that N was undoubtedly the key element for maize yield building. P fertilization and MSF together positively influenced the apparent N recovery fraction (NRF). N uptake alone did not reflect on its own the yield obtained, and the relationship between grain yield and N uptake is shifted by MSF, with the grain yield increase per unit of N uptake being higher with than without MSF. Combining MSF and P fertilization may therefore lead to improved N use efficiency, making the application of fertilizer N (lower rates) more attractive to small-scale farmers.  相似文献   

16.
Research was conducted at two sites located in medium and low altitude zones in eastern Uganda. The aim of the study was to evaluate the benefit of Velvet bean (Mucuna pruriens) and inorganic N fertilizer in improving maize production in contrasting agro-ecological zones over two seasons. The medium altitude zone (Bulegeni) is a high-potential agricultural zone, with much more reliable rainfall and soils with high-productivity rating. The opposite is true for the low-altitude zone (Kibale). The soils were fertile for the site in the high-potential zone and poor in the low-potential zone. Over 22 weeks of fallow or relay with maize, Mucuna produced on average 8.2 t ha–1 dry matter, accumulating 170 kg N ha–1, with 57% of the N derived from the atmosphere in the low-potential zone, compared to 11.6 t ha–1 dry matter, 350 kg N ha–1, with 43% of the N derived from air, in the high-potential zone. Between 77 and 97% of the Mucuna-accumulated N was released over a period of 25 weeks, at a rate of 0.081 and 0.118 week–1 in the high- and low-potential zones, respectively. The N-balance study shows that 93% of the applied N was accounted for in the high-potential zone, compared to 61% in the low-potential zone, due to differences in soil texture, soil fertility and maize biomass production at the two sites. As much as 44–73% of the N remained in the soil in the high-potential zone, compared to 39–53% in the low-potential zone, which might benefit the subsequent crops. There was a significant increase in maize yield in response to the added N, both from urea or Mucuna. The average increment above the control (continuous maize) was 3.2 t ha–1 in the high-potential zone and 1.0 t ha–1 in the low-potential zone. The maize yield increase over two seasons added up to 3.1 t ha–1 with the application of inorganic fertilizers, and 1.9 t ha–1 with a preceding Mucuna–maize relay in the high-potential zone, compared to an average of, 1.7 t ha–1 with application of inorganic fertilizers and with Mucuna–maize relay in the low-potential zone. Application of P fertilizers with either N supply strategy significantly increased maize yield in the low-potential zone only, resulting in an additional 0.8 t ha–1 for the inorganic N fertilizers and 1.3 t ha–1 for a preceding Mucuna–maize relay. Apparently, P fertilizers are needed on poor soils. Clearly farmers stand to gain in terms of maize production from fertilizers as well as from the use of Mucuna, with more benefits from inorganic fertilizers in the high-potential zone.  相似文献   

17.
Winter wheat crops were grown with ostensibly adequate supplies of all soil nutrients in 1990 and 1991 with the aim of testing if late foliar supplements of K and N, applied at key development stages, could improve grain yield and grain N content. Foliar sprays of KNO3 solution, supplying up to 40 kg K ha–1 in total, at flag leaf unfolded, inflorescence completed and the watery-ripe stage of grain filling, had no effect on yield, yield components or grain N. Urea, supplying 40 kg N ha–1 at flag leaf unfolded, had no effects on grain yield and grain N in 1990, but in 1991 grain N was increased by 0.14% whilst yield was reduced by up to 0.6 t ha–1. Urea scorched flag leaf tips in both years. In 1990, the spring was very dry and foliar supplements might have been expected to have had an effect, but on this highly fertile soil all crop K and N requirements were met from the soil.  相似文献   

18.
Effects of crop rotation and fertilization (nitrogen and manure) on concentrations of soil organic carbon (SOC) and total soil nitrogen (TSN) in bulk soil and in soil aggregates were investigated in a long-term field experiment established in 1953 at Ås, Norway. The effect of these management practices on SOC sequestration was estimated. The experiment had three six-course rotations: (I) continuous spring grain, (II) spring grain for 3 years followed by root crops for 3 years, and (III) spring grain for 2 years followed by meadow for 4 years. Three fertilizer treatments compared were: (A) 30–40 kg N ha–1; (B) 80–120 kg N ha–1; and (C) a combination of B and 60 Mg farmyard manure (FYM) ha–1. All plots received a basal rate of PK fertilizer. Soil samples from these treatments were collected in autumn 2001 and analyzed for aggregate size, SOC and TSN concentrations. There were significant increases in 0.6–2 mm and < 0.6 mm aggregate size fractions, and reduction in the 6–20 mm and the > 20 mm sizes for rotation III only. There were also significant differences among rotations with regard to water stable aggregation. The order of increase in stability was II < I < III. Fertilizer treatment had no effect on aggregation or aggregate size distribution, but there was a slight tendency of increased stability with the application of FYM. Aggregate stability increased with increasing concentration of SOC (r2 = 0.53). The SOC and TSN concentrations in bulk soil were significantly higher in rotation III than in rotations II and I. Application of FYM increased SOC and TSN concentrations significantly in the 0–10 cm soil depth, but there were few significant differences between fertility treatments A and B. There was a trend of increase in concentration of SOC and TSN with decreasing aggregate size, but significant differences in these parameters in different aggregate size fractions were found only in few cases. The SOC and TSN concentrations were higher in >0.25 mm than in < 0.25 mm aggregates. The SOC sequestration rate was 77–167 kg SOC ha–1 yr–1 by increasing the N rate and 40–162 kg SOC ha–1 yr–1 by applying FYM. The SOC sequestration rate by judicious use of inorganic fertilizer was the greatest in the grain–meadow rotation, while that by application of FYM was the greatest in the all grain rotation.  相似文献   

19.
A two year field experiment was carried out at the Indian Agricutural Research Institute, New Delhi - 110012, India to assess the effect of mungbean (Vigna radiata L.) and uridbean (Vigna mungo L.) residues on the yield and N uptake of a succeeding wheat crop as compared to sorghum fodder. Sorghum produced 3.5–7.5 times more dry matter and removed 2–3 times more nitrogen than mungbean or uridbean during same duration (80 ± 10 days) of their growth. Without N application the grain yield of wheat following mungbean and uridbean (without residue incorporation) was 0.45 and 0.48 t ha–1 more than the yield of wheat following sorghum fodder. These yields were equivalent to that predicted when 36 and 38 kg urea-N ha–1, respectively, was directly applied to wheat. The residual effects of these grain legumes were higher when succeeding wheat was fertilized with 60 kg urea-N ha–1; at this level mungbean and uridbean spared 52 and 43 kg urea-N ha–1, respectively, in succeeding wheat. The residual effect of mungbean and uridbean further increased when their residue was incorporated in soil; with this practice they spared 94 and 115 kg urea-N ha–1, respectively, without N application to wheat and 74 and 82 kg urea-N ha–1, respectively, with an application of 60 kg urea-N ha–1 to wheat.Mungbean and uridbean, without residue incorporation, increased aboveground plant-N uptake of succeeding wheat by 11.5–34.9 and 10.8–34.0 kg N ha–1, respectively; whereas with residue incorporation, they increased aboveground plant-N content of succeeding wheat by 26.1–45.8 and 32.7–47.7 kg N ha–1, respectively.The results of the present study indicate that there is both an indirect sparing effect and a direct residual effect of mungbean and uridbean on the nitrogen needs of succeeding wheat, more so when their residues are incorporated in soil.  相似文献   

20.
In many rainfed areas a rainy season crop is followed by a post rainy season (rabi) crop and the yield of the latter is directly related to the profile-stored water at the time of its sowing. Mulching is known to help increase soil moisture storage. The yields of dryland crops are also limited by availability of nutrients, particularly nitrogen. We studied the effect of organic mulching in rainy season maize or fallow on the yield of maize and the yield and water use efficiency (WUE) of the following wheat fertilized with different rates of N.Mulching increased yield of maize by 9–12% and that of the following wheat by 25–28%. The increase in wheat yield with mulching in the previous crop of maize is attributable to greater residual moisture after maize particularly in the seed-zone and enrichment of soil with nutrients. In wheat following mulched maize, the yields with 0 and 40 kg N ha–1 were comparable to those with 40 and 80 kg N ha–1 in the absence of mulch. For a given N rate the yield of wheat was a function of available water supply. The yield increased with water supply up to a certain level beyond which it decreased with additional water supply. The threshold water supply and the corresponding yield increased with increase in N rate. Favourable effects of mulching in maize on the yield of wheat decreased with increase in water supply. The results suggest that to achieve optimum yield of wheat in double cropping the previous crop should be mulched and the N rate for wheat should be chosen in relation to available water supplies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号