首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
P-type doping is used to demonstrate high-To, low-threshold 1-3 /spl mu/m InAs quantum-dot lasers. A 5-/spl mu/m-wide oxide confined stripe laser with a 700-/spl mu/m-long cavity exhibits a pulsed T/sub 0/ = 213 K (196 K CW) from 0/spl deg/C to 80/spl deg/C. At room temperature, the devices have a CW threshold current of /spl sim/4.4 mA with an output power over 15 mW. The threshold at 100/spl deg/C is 8.4 mA with an output power over 8 mW.  相似文献   

2.
Pulsed lasing operation of a 670 nm AlGaInP-based oxide-confined vertical-cavity surface-emitting laser (VCSEL) at high temperatures is demonstrated. At +120/spl deg/C heatsink temperature output power exceeded 0.5 mW and at +160/spl deg/C 25 /spl mu/W output power was achieved  相似文献   

3.
Continuous wave (CW) operation at room temperature of electrically pumped InGaAlAs/InP vertical-cavity surface-emitting lasers (VCSELs) at emission wavelengths as high as 2.3 /spl mu/m is demonstrated for the first time. Devices with 15 /spl mu/m active region diameter show a maximum output power of 0.75 mW at 20/spl deg/C and a maximum CW operating temperature of 45/spl deg/C.  相似文献   

4.
650-nm AlGaInP-AlGaAs-based oxide-confined VCSELs are investigated in dependence on the current aperture size. VCSELs with small aperture (a=5 /spl mu/m) have a maximum continuous-wave (CW) output power of about 1 mW at room temperature. They reach higher operating temperatures (T/sub max/=55/spl deg/C), have narrower beam profiles, less transverse modes, and a higher side mode suppression compared to large aperture VCSELs (a>13 /spl mu/m). The latter devices emit a CW-output power P=3 mW at 20/spl deg/C. Reliability tests of 655-nm devices show at 20/spl deg/C an output power of P/spl ap/0.4 mW over more than 1000 h and at 40/spl deg/C P/spl ap/0.1 mW over 500 h.  相似文献   

5.
360 mW fibre output power and excellent wavelength stability within 0.6 nm over a temperature range from 10 to 70/spl deg/C in a grating-stabilised AlGalaAs/InP 14xx-nm pump laser is reported. A fibre output power of 300 mW was maintained from 10 to 70/spl deg/C as the driving current was increased by 36% or 1.34 dB.  相似文献   

6.
1.3 /spl mu/m oxide confined GaInNAs VCSELs designed using the same design philosophy used for standard 850 nm VCSELs is presented. The VCSELs have doped mirrors, with graded and highly doped interfaces, and are fabricated using production-friendly procedures. Multimode VCSELs (11 /spl mu/m oxide aperture) with an emission wavelength of 1287 nm have a threshold current of 3 mA and produce 1 mW of output power at 20/spl deg/C. The maximum operating temperature is 95/spl deg/C. Emission at 1303 nm with 1 mW of output power and a threshold current of 7 mA has been observed from VCSELs with a larger detuning between the gain peak and the cavity resonance.  相似文献   

7.
Stripe-width and cavity length dependencies of high-temperature performances of 1.3-/spl mu/m InGaAsP-InP well-designed buried-heterostructure strained multiquantum-well (MQW) lasers were investigated. The threshold currents as low as 4.5/10.5 mA and slope efficiencies as high as 0.48/0.42 mW/mA at 25/spl deg/C/85/spl deg/C were obtained in the MQW lasers with 1.5-/spl mu/m width, 250-/spl mu/m length, and 0.3/0.85 facet reflectivity. With temperature increasing from 25/spl deg/C to 85/spl deg/C, the MQW lasers exhibited lower output power degradation, the minimum value was 1.78 dB at an operation current of 45 mA. The MQW lasers were suitable for application in optical access networks.  相似文献   

8.
We present the first continuous-wave (CW) edge-emitting lasers at 1.5 /spl mu/m grown on GaAs by molecular beam epitaxy (MBE). These single quantum well (QW) devices show dramatic improvement in all areas of device performance as compared to previous reports. CW output powers as high as 140 mW (both facets) were obtained from 20 /spl mu/m /spl times/ 2450 /spl mu/m ridge-waveguide lasers possessing a threshold current density of 1.06 kA/cm/sup 2/, external quantum efficiency of 31%, and characteristic temperature T/sub 0/ of 139 K from 10/spl deg/C-60/spl deg/C. The lasing wavelength shifted 0.58 nm/K, resulting in CW laser action at 1.52 /spl mu/m at 70/spl deg/C. This is the first report of CW GaAs-based laser operation beyond 1.5 /spl mu/m. Evidence of Auger recombination and intervalence band absorption was found over the range of operation and prevented CW operation above 70/spl deg/C. Maximum CW output power was limited by insufficient thermal heatsinking; however, devices with a highly reflective (HR) coating applied to one facet produced 707 mW of pulsed output power limited by the laser driver. Similar CW output powers are expected with more sophisticated packaging and further optimization of the gain region. It is expected that such lasers will find application in next-generation optical networks as pump lasers for Raman amplifiers or doped fiber amplifiers, and could displace InP-based lasers for applications from 1.2 to 1.6 /spl mu/m.  相似文献   

9.
By growing the InGaAs active layer at temperatures lower than in conventional growth, we extended the lasing wavelength and presented the high reliability in InGaAs strained-quantum-well laser diodes. Equivalent I-L characteristics were obtained for 1.02-, 1.05-, and 1.06-/spl mu/m laser diodes with a cavity length of 1200 /spl mu/m. Maximum output power as high as 800 mW and fundamental transverse mode operation at up to 400 mW were obtained at 1.06 /spl mu/m and an 1800-/spl mu/m cavity. Stable operation was observed for over 14 000 h under auto-power-control of 225 mW at 50/spl deg/C for the 1.02-, 1.05-, and 1.06-/spl mu/m lasers with a 900-/spl mu/m cavity.  相似文献   

10.
A 1.3-/spl mu/m AlGaInAs multiquantum well ridge waveguide distributed feedback laser diode was developed. By forming n-InGaAsP grating in the n-InP cladding layer close to the active region, accumulation of the holes in the grating layer was reduced and over 5 mW of output power was obtained at 120/spl deg/C. Clear eye opening was confirmed with no mask hits for OC-192 under 10-Gb/s direct modulation at the temperature up to 120/spl deg/C.  相似文献   

11.
High output power of about 800 mW in a chip and stable operation for over 14 000 h under 225 mW at 50/spl deg/C have been achieved in 1.06 /spl mu/m InGaAs strained-quantum-well laser diodes, which were realised by low-temperature growth of the InGaAs well layers.  相似文献   

12.
High-temperature high-power continuous-wave (CW) operation of high-reflectivity-coated 12-/spl mu/m-wide quantum-cascade lasers emitting at /spl lambda/ = 6 /spl mu/m with a thick electroplated Au top contact layer is reported for different cavity lengths. For a 3-mm-long laser, the CW optical output powers of 381 mW at 293 K and 22 mW at maximum operating temperature of 333 K (60/spl deg/C) are achieved with threshold current densities of 1.93 and 3.09 kA/cm/sup 2/, respectively. At 298 K, the same cavity gives a maximum wall plug efficiency of 3.17% at 1.07 A. An even higher CW optical output power of 424 mW at 293 K is obtained for a 4-mm-long laser and the device also operates up to 332 K with an output power of 14 mW. Thermal resistance is also analyzed at threshold as a function of cavity length.  相似文献   

13.
High-performance singlemode InGaNAs/GaAs laser   总被引:1,自引:0,他引:1  
Performance characteristics of an InGaNAs/GaAs ridge-waveguide in-plane laser diode, which is grown by molecular beam epitaxy, are reported. The laser emits at a wavelength of 1.262 /spl mu/m in a single lateral mode, launching an output up to 240 mW at 20/spl deg/C and 20 mW at 120/spl deg/C. The threshold is 15 mA at 20/spl deg/C, corresponding to a threshold current density of 313 A/cm/sup 2/.  相似文献   

14.
400 mW uncooled MiniDIL pump modules   总被引:1,自引:0,他引:1  
A new generation of wavelength stabilised, uncooled 980 nm pump modules in MiniDIL housings is presented, enabling 400 mW ex-fibre power over a temperature range of 10/spl deg/C to 70/spl deg/C. At 100/spl deg/C 200 mW power is still obtained with a robust fibre coupling scheme.  相似文献   

15.
The first InGaAsN VCSELs grown by MOCVD with CW lasing wavelength longer than 1.3 /spl mu/m are reported. The devices were of conventional p-i-n structure with doped DBR mirrors. CW lasing up to 65/spl deg/C was observed, with a maximum output power at room temperature of 0.8 mW for multimode devices and nearly 0.3 mW for single-mode devices.  相似文献   

16.
1.55 /spl mu/m room-temperature continuous-wave operation of a high performance optically pumped vertical external cavity surface emitting laser is reported. The structure includes an active region with strain compensated quantum wells, and a broadband SiN/sub x//Si/Au Bragg reflector transferred on an Si substrate by Au/In dry bonding. Output power of up to 45 mW is achieved at 0/spl deg/C, and continuous-wave operation is observed up to 45/spl deg/C.  相似文献   

17.
Buried heterostructure quantum cascade lasers emitting at 5.64 /spl mu/m are presented. Continuous-wave (CW) operation has been achieved at -30/spl deg/C for junction down mounted devices with both facets coated. A 750 /spl mu/m-long laser exhibited 3 mW of CW power with a threshold current density of 5.4 kA/cm/sup 2/.  相似文献   

18.
Wafer-fused InGaAlAs/AlGaAs vertical cavity surface emitting lasers with InAlGaAs-based tunnel junction injection have shown record high 0.7 mW singlemode output power in the 10-80/spl deg/C temperature range. Single transverse-mode operation with 35 dB sidemode suppression and low divergence beam with 9/spl deg/ half width at half maximum has been measured on devices with 7 /spl mu/m aperture.  相似文献   

19.
A 32-bit integer execution core containing a Han-Carlson arithmetic-logic unit (ALU), an 8-entry /spl times/ 2 ALU instruction scheduler loop and a 32-entry /spl times/ 32-bit register file is described. In a 130 nm six-metal, dual-V/sub T/ CMOS technology, the 2.3 mm/sup 2/ prototype contains 160 K transistors. Measurements demonstrate capability for 5-GHz single-cycle integer execution at 25/spl deg/C. The single-ended, leakage-tolerant dynamic scheme used in the ALU and scheduler enables up to 9-wide ORs with 23% critical path speed improvement and 40% active leakage power reduction when compared to a conventional Kogge-Stone implementation. On-chip body-bias circuits provide additional performance improvement or leakage tolerance. Stack node preconditioning improves ALU performance by 10%. At 5 GHz, ALU power is 95 mW at 0.95 V and the register file consumes 172 mW at 1.37 V. The ALU performance is scalable to 6.5 GHz at 1.1 V and to 10 GHz at 1.7 V, 25/spl deg/C.  相似文献   

20.
We report high-performance 0.85-/spl mu/m bottom-emitting vertical-cavity surface-emitting lasers (VCSELs) on an AlGaAs substrate with 2.1 mA threshold current density 4.2 mW maximum output power, 11.7% power conversion efficiency and a maximum operating temperature of 130/spl deg/C. We also demonstrate a flip-chip bonded 0.85-/spl mu/m bottom-emitting VCSEL array, and confirm all pixels across the 8/spl times/8 VCSEL array operate at a f/sub 3/ dB bandwidth of 2.6 GHz at only 4.2 mA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号