首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The C terminal of cardiac troponin C (TnC) has two Ca2+-Mg2+ sites which exhibit approximately 20-fold higher Ca2+ affinity than the two C-terminal Ca2+ specific sites in calmodulin (CaM). Substitution of the third EF-hand of TnC for the corresponding EF-hand of CaM produced a mutant (CaM[3TnC]) with a 10-fold higher C-terminal Ca2+ and Mg2+ affinity. Substitution of loop 3 of TnC for loop 3 of CaM produced a mutant (CaM[loop3TnC]) with a 10-fold faster Ca2+ on rate and a 5-fold faster Ca2+ off rate than CaM. A mutant CaM (CaM[loop3X, Z]) which contained the identical coordinating amino acids and X and Z acid pairs of TnC loop 3 had a 3-fold higher C-terminal Ca2+ affinity without the increased Ca2+ exchange rates exhibited by CaM[loop3TnC]. Thus, loop factors other than the acid pairs must be responsible for the rapid Ca2+ exchange rates of CaM[loop3TnC]. Helix 6 and helix 5 in the third EF-hand of TnC support the rapid Ca2+ on rate of TnC's loop 3 and produce an approximately 4-fold reduction in its Ca2+ off rate, explaining the high Ca2+ affinity of the third EF-hand of TnC. Exchanging loop 3 or helix 5 of TnC into CaM increased the Mg2+ affinity by decreasing the Mg2+ off rate. Our results are consistent with the high Ca2+ and Mg2+ affinity of the third EF-hand of TnC resulting from the two (X and Z) acid pairs in loop 3, coupled with the greater hydrophobicity of helix 6 and helix 5 compared to that of the third EF-hand of CaM.  相似文献   

2.
We have previously shown that alpha1-adrenergic activation inhibited beta-adrenergic-stimulated L-type Ca2+ current (I(Ca)). To determine the role of protein kinase C (PKC) in this regulation, the inositol trisphosphate pathway was bypassed by direct activation of PKC with 4beta-phorbol 12-myristate 13-acetate (PMA). To minimize Ca2+-induced Ca2+ inactivation, Ba2+ current (I(Ba)) was recorded through Ca2+ channels in adult rat ventricular myocytes. We found that PMA (0.1 micromol/L) consistently inhibited basal I(Ba) by 40.5+/-7.4% and isoproterenol (ISO, 0.1 micromol/L)-stimulated I(Ba) by 48.9+/-7.8%. These inhibitory effects were not observed with the inactive phorbol ester analogue alpha-phorbol 12,13-didecanoate (0.1 micromol/L). To identify the PKC isozymes that mediate these PMA effects, we intracellularly applied peptide inhibitors of a subclass of PKC isozymes, the C2-containing cPKCs. These peptides (betaC2-2 and betaC2-4) specifically inhibit the translocation and function of C2-containing isozymes (alpha-PKC, betaI-PKC, and betaII-PKC), but not the C2-less isozymes (delta-PKC and epsilon-PKC). We first used the pseudosubstrate peptide (0.1 micromol/L in the pipette), which inhibits the catalytic activity of all the PKC isozymes, and found that PMA-induced inhibition of ISO-stimulated I(Ba) was reduced to 16.8+/-7.4% but was not affected by the scrambled pseudosubstrate peptide. The effects of PMA on basal and ISO-stimulated I(Ba) were then determined in the presence of C2-derived peptides or control peptides. When the pipette contained 0.1 micromol/L of betaC2-2 or betaC2-4, PMA-induced inhibition of basal I(Ba) was 26.1+/-4.5% and 23.6+/-2.2%, respectively. Similarly, ISO-stimulated I(Ba) was inhibited by 29.9+/-6.6% and 29.3+/-7.8% in the presence of betaC2-2 and betaC2-4, respectively. In contrast, there was no significant change in the effect of PMA in the presence of control peptides, scrambled betaC2-4, or pentalysine. Finally, PMA-induced inhibition of basal and ISO-stimulated I(Ba) was almost completely abolished in cells dialyzed with both betaC2-2 and betaC2-4. Together, these data suggest a role for C2-containing isozymes in mediating PMA-induced inhibition of L-type Ca2+ channel activity.  相似文献   

3.
4.
The C2 domain is a Ca2+-dependent, membrane-targeting motif originally discovered in protein kinase C and recently identified in numerous eukaryotic signal-transducing proteins, including cytosolic phospholipase A2 (cPLA2) of the vertebrate inflammation pathway. Intracellular Ca2+ signals recruit the C2 domain of cPLA2 to cellular membranes where the enzymatic domain hydrolyzes specific lipids to release arachidonic acid, thereby initiating the inflammatory response. Equilibrium binding and stopped-flow kinetic experiments reveal that the C2 domain of human cPLA2 binds two Ca2+ ions with positive cooperativity, yielding a conformational change and membrane docking. When Ca2+ is removed, the two Ca2+ ions dissociate rapidly and virtually simultaneously from the isolated domain in solution. In contrast, the Ca2+-binding sites become occluded in the membrane-bound complex such that Ca2+ binding and dissociation are slowed. Dissociation of the two Ca2+ ions from the membrane-bound domain is an ordered sequential process, and release of the domain from the membrane is simultaneous with dissociation of the second ion. Thus, the Ca2+-signaling cycle of the C2 domain passes through an active, membrane-bound state possessing two occluded Ca2+ ions, one of which is essential for maintenance of the protein-membrane complex.  相似文献   

5.
The cardiac muscle sarcoplasmic reticulum Ca2+ release channel (ryanodine receptor) is a ligand-gated channel that is activated by micromolar cytoplasmic Ca2+ concentrations and inactivated by millimolar cytoplasmic Ca2+ concentrations. The effects of sarcoplasmic reticulum lumenal Ca2+ on the purified release channel were examined in single channel measurements using the planar lipid bilayer method. In the presence of caffeine and nanomolar cytosolic Ca2+ concentrations, lumenal-to-cytosolic Ca2+ fluxes >/=0.25 pA activated the channel. At the maximally activating cytosolic Ca2+ concentration of 4 microM, lumenal Ca2+ fluxes of 8 pA and greater caused a decline in channel activity. Lumenal Ca2+ fluxes primarily increased channel activity by increasing the duration of mean open times. Addition of the fast Ca2+-complexing buffer 1,2-bis(2-aminophenoxy)ethanetetraacetic acid (BAPTA) to the cytosolic side of the bilayer increased lumenal Ca2+-activated channel activities, suggesting that it lowered Ca2+ concentrations at cytosolic Ca2+-inactivating sites. Regulation of channel activities by lumenal Ca2+ could be also observed in the absence of caffeine and in the presence of 5 mM MgATP. These results suggest that lumenal Ca2+ can regulate cardiac Ca2+ release channel activity by passing through the open channel and binding to the channel's cytosolic Ca2+ activation and inactivation sites.  相似文献   

6.
The Ca(2+)-binding properties of photosystem II were investigated with radioactive 45Ca2+. PS II membranes, isolated from spinach grown on a medium containing 45Ca2+, contained 1.5 Ca2+ per PS II unit. Approximately half of the incorporated radioactivity was lost after incubation for 30 h in nonradioactive buffer. About 1 Ca2+/PS II bound slowly to Ca(2+)-depleted membranes in the presence of the extrinsic 16- and 23-kDa polypeptides in parallel with restoration of oxygen-evolving activity. The binding was heterogeneous with dissociation constants of 60 microM (0.7 Ca2+/PS II) and 1.7 mM (0.3 Ca2+/PS II), respectively, which could reflect different affinities of the dark-stable S-states for Ca2+. The reactivation of oxygen-evolving activity closely followed the binding of Ca2+, showing that a single exchangeable Ca2+ per PS II is sufficient for the water-splitting reaction to function. In PS II, depleted of the 16- and 23-kDa polypeptides, about 0.7 exchangeable Ca2+/PS II binds with a dissociation constant of 26 microM, while 0.3 Ca2+ binds with a much weaker affinity (Kd > 0.5 mM). The rate of binding of Ca2+ in the absence of the two extrinsic polypeptides was significantly higher than with the polypeptides bound. The rate of dissociation of bound Ca2+ in the dark, which had a half-time of about 80 h in intact PS II, increased in the absence of the 16- and 23-kDa polypeptides and showed a further increase after the additional removal of the 33-kDa protein and manganese. The rate of dissociation was also significantly faster in weak light than in the dark regardless of the presence or absence of the 16- and 23-kDa polypeptides.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
C2-domains are widespread protein modules with diverse Ca2+-regulatory functions. Although multiple Ca2+ ions are known to bind at the tip of several C2-domains, the exact number of Ca2+-binding sites and their functional relevance are unknown. The first C2-domain of synaptotagmin I is believed to play a key role in neurotransmitter release via its Ca2+-dependent interactions with syntaxin and phospholipids. We have studied the Ca2+-binding mode of this C2-domain as a prototypical C2-domain using NMR spectroscopy and site-directed mutagenesis. The C2-domain is an elliptical module composed of a beta-sandwich with a long axis of 50 A. Our results reveal that the C2-domain binds three Ca2+ ions in a tight cluster spanning only 6 A at the tip of the module. The Ca2+-binding region is formed by two loops whose conformation is stabilized by Ca2+ binding. Binding involves one serine and five aspartate residues that are conserved in numerous C2-domains. All three Ca2+ ions are required for the interactions of the C2-domain with syntaxin and phospholipids. These results support an electrostatic switch model for C2-domain function whereby the beta-sheets of the domain provide a fixed scaffold for the Ca2+-binding loops, and whereby interactions with target molecules are triggered by a Ca2+-induced switch in electrostatic potential.  相似文献   

8.
Ca2+ binding to the N-domain of skeletal muscle troponin C (sNTnC) induces an "opening" of the structure [Gagné, S. M., et al. (1995) Nat. Struct. Biol. 2, 784-789], which is typical of Ca2+-regulatory proteins. However, the recent structures of the E41A mutant of skeletal troponin C (E41A sNTnC) [Gagné, S. M., et al. (1997) Biochemistry 36, 4386-4392] and of cardiac muscle troponin C (cNTnC) [Sia, S. K., et al. (1997) J. Biol. Chem. 272, 18216-18221] reveal that both of these proteins remain essentially in the "closed" conformation in their Ca2+-saturated states. Both of these proteins are modified in Ca2+-binding site I, albeit differently, suggesting a critical role for this region in the coupling of Ca2+ binding to the induced structural change. To understand the mechanism and the energetics involved in the Ca2+-induced structural transition, Ca2+ binding to E41A sNTnC and to cNTnC have been investigated by using one-dimensional 1H and two-dimensional {1H,15N}-HSQC NMR spectroscopy. Monitoring the chemical shift changes during Ca2+ titration of E41A sNTnC permits us to assign the order of stepwise binding as site II followed by site I and reveals that the mutation reduced the Ca2+ binding affinity of the site I by approximately 100-fold [from KD2 = 16 microM [sNTnC; Li, M. X., et al. (1995) Biochemistry 34, 8330-8340] to 1.3 mM (E41A sNTnC)] and of the site II by approximately 10-fold [from KD1 = 1.7 microM (sNTnC) to 15 microM (E41A sNTnC)]. Ca2+ titration of cNTnC confirms that cNTnC binds only one Ca2+ with a determined dissociation constant KD of 2.6 microM. The Ca2+-induced chemical shift changes occur over the entire sequence in cNTnC, suggesting that the defunct site I is perturbed when site II binds Ca2+. These measurements allow us to dissect the mechanism and energetics of the Ca2+-induced structural changes.  相似文献   

9.
The tetrodotoxin-sensitive sodium ion (Na+) channel is opened by cellular depolarization and favors the passage of Na+ over other ions. Activation of the beta-adrenergic receptor or protein kinase A in rat heart cells transformed this Na+ channel into one that is promiscuous with respect to ion selectivity, permitting calcium ions (Ca2+) to permeate as readily as Na+. Similarly, nanomolar concentrations of cardiotonic steroids such as ouabain and digoxin switched the ion selectivity of the Na+ channel to this state of promiscuous permeability called slip-mode conductance. Slip-mode conductance of the Na+ channel can contribute significantly to local and global cardiac Ca2+ signaling and may be a general signaling mechanism in excitable cells.  相似文献   

10.
The biological activity of the Alzheimer's disease amyloid beta protein may be related to modulation of membrane lipid peroxidation. The effect of amyloid beta protein fragment 25-35 [A beta(25-35)] on lipid peroxidation was examined in liposomes enriched with polyunsaturated fatty acids. The activity of A beta(25-35) was compared to that of A beta(25-35) with either a scrambled sequence [A beta(25-35)scram] or a peptide sequence in which methionine was replaced with leucine [A beta(25-35) met]. A beta(25-35) inhibited lipid peroxidation in a dose- and time-dependent manner. The antioxidant activity of A beta(25-35) was observed at concentrations as low as 10 nM. The relative antioxidant activities of the amyloid beta protein fragments were as follows: A beta(25-35) > A beta(25-35) met > A beta(25-35)scram. The two more potent peptides intercalated into the membrane hydrocarbon core, as determined by small-angle x-ray diffraction approaches. These findings indicate that the amphiphilic A beta(25-35) peptide inhibits lipid peroxidation at low concentrations as a result of physicochemical interactions with the membrane lipid bilayer.  相似文献   

11.
Hypertrophic cardiomyopathy (HCM) is a disease of sarcomeric proteins. The mechanism by which mutant sarcomeric proteins cause HCM is unknown. The leading hypothesis proposes that mutant sarcomeric proteins exert a dominant-negative effect on myocyte structure and function. To test this, we produced transgenic mice expressing low levels of normal or mutant human cardiac troponin T (cTnT). We constructed normal (cTnT-Arg92) and mutant (cTnT-Gln92) transgenes, driven by a murine cTnT promoter, and produced three normal and five mutant transgenic lines, which were identified by PCR and Southern blotting. Expression levels of the transgene proteins, detected using a specific antibody, ranged from 1 to 10% of the total cTnT pool. M-mode and Doppler echocardiography showed normal left ventricular dimensions and systolic function, but diastolic dysfunction in the mutant mice evidenced by a 50% reduction in the E/A ratio of mitral inflow velocities. Histological examination showed cardiac myocyte disarray in the mutant mice, which amounted to 1-15% of the total myocardium, and a twofold increase in the myocardial interstitial collagen content. Thus, the mutant cTnT-Gln92, responsible for human HCM, exerted a dominant-negative effect on cardiac structure and function leading to disarray, increased collagen synthesis, and diastolic dysfunction in transgenic mice.  相似文献   

12.
Reactive oxygen species are known to cause attenuation of cardiac muscle contraction. This attenuation is usually preceded by transient augmentation of twitch amplitude as well as cytosolic Ca2+. The present study examines the role of an endogenous antioxidant, glutathione in the mechanism of H2O2-mediated augmentation of Ca2+ release from the sarcoplasmic reticulum. Whole-cell patch-clamped single rat ventricular myocytes were dialyzed with the Cs+-rich internal solution containing 200 microM fura-2 and 2 mM glutathione (reduced form). After equilibration of the myocyte with intracellular dialyzing solution, Ca2+ current-induced Ca2+ release from the sarcoplasmic reticulum was monitored. Rapid perfusion with H2O2 (100 microM or 1 mM) for 20 s inhibited Ca2+ current, but enhanced the intracellular Ca2+ transients for 3-4 min. Thus, the efficacy of Ca2+-induced Ca2+ release mechanism was augmented in 71% of myocytes (n = 7). This enhancement ranged between 1.5- to threefold as the concentrations of H2O2 were raised from 100 microM to 1 mM. If glutathione were excluded from the patch pipette or replaced with glutathione disulfide, the enhancement of Ca2+-induced Ca2+ release was seen in only a minority (20%) of the myocytes. H2O2 exposure did not increase the basal intracellular Ca2+ levels, suggesting that the mechanism of H2O2 action was not mediated by inhibition of the sarcoplasmic reticulum Ca2+ uptake or activation of passive Ca2+ leak pathway. H2O2-mediated stimulation of Ca2+-induced Ca2+ release was also observed in myocytes dialyzed with dithiothreitol (0.5 mM). Therefore, reduced thiols support the action of H2O2 to enhance the efficacy of Ca2+-induced Ca2+ release, suggesting that redox reactions might regulate Ca2+ channel-gated Ca2+ release by the ryanodine receptor.  相似文献   

13.
Synaptotagmin I is a synaptic vesicle protein that is thought to act as a Ca2+ sensor in neurotransmitter release. The first C2 domain of synaptotagmin I (C2A domain) contains a bipartite Ca2+-binding motif and interacts in a Ca2+-dependent manner with syntaxin, a central component of the membrane fusion complex. Analysis by nuclear magnetic resonance spectroscopy and site-directed mutagenesis shows that this interaction is mediated by the cooperative action of basic residues surrounding the Ca2+-binding sites of the C2A domain and is driven by a change in the electrostatic potential of the C2A domain induced by Ca2+ binding. A model is proposed whereby synaptotagmin acts as an electrostatic switch in Ca2+-triggered synaptic vesicle exocytosis, promoting a structural rearrangement in the fusion machinery that is effected by its interaction with syntaxin.  相似文献   

14.
In this work, we explored the relationship between the freely exchangeable Ca2+ (FECa2+) in the dense tubules (DT) and the sarco(endo)plasmic reticulum (SER) Ca2+-ATPase (SERCA) in circulating human platelets and examined the relationship between blood pressure (BP) and these platelet parameters. Studying platelets from 32 healthy men, we showed that the maximal reaction velocity (Vmax) of the SERCA significantly correlated with FECa2+ in the DT and with the protein expressions of SERCA 2 and 3. BP positively correlated with both the Vmax of the SERCA (r=.462, P=.010) and the FECa2+ sequestered in the DT (r=.492, P=.005). The relationships between these platelet Ca2+ parameters and BP were in part confounded by increased levels of serum triglycerides and diminished HDL cholesterol with a higher BP. No correlation was observed between the resting cytosolic Ca2+ and BP. Collectively, these findings indicate that (1) an increase in the cellular Ca2+ load in platelets is expressed by a higher activity of the SERCA and an increase in the expressions of SERCA 2 and 3 proteins, coupled with an increase in the FECa2+ in the DT, and (2) a higher BP is associated with an increase in platelet Ca2+ load in human beings, expressed by a rise in the FECa2+ in the DT and the upregulation of SERCA activity.  相似文献   

15.
Flare and hyperalgesia after intradermal capsaicin injection in human skin. J. Neurophysiol. 80: 2801-2810, 1998. We investigated the neurovascular mechanisms that determine the flare response to intradermal capsaicin injection in humans and delineated the associated areas of mechanical and heat hyperalgesia. The flare response was monitored both visually and with infrared telethermography. The areas of mechanical and heat hyperalgesia were determined psychophysically. Thermography detected very large areas of flare. As an early event underlying the flare and before onset of the area of rubor of the skin, thermography detected the appearance of multifocal spots of increased temperature caused by dilatation of cutaneous arterioles. Repetition of capsaicin injection days apart into the same forearm induced multifocal spots of temperature elevation identical to the ones obtained in the first session, indicating dilatation of the same arterioles. Reactive hyperemia also consisted in the appearance of multifocal spots of increased temperature, which were identical to the ones reacting during the flare response, suggesting participation of the same arterioles in both events. Strips of local anesthetic placed to block cutaneous nerves prevented the spread of both the thermographic flare and associated hyperalgesia. It is inferred that the cutaneous nerve fibers responsible for the thermographic flare branch, or have coupled axons, over a long distance. The large area of flare coincided with the area of mechanical and heat hyperalgesia. Equivalence of the areas of flare and mechanical and heat hyperalgesia induced by intradermal capsaicin injection suggests that all three phenomena are the consequence of neural factors that operate peripherally.  相似文献   

16.
There is a long-standing controversy on whether membrane lipids or proteins are the target for general anesthetics. The plasma membrane-associated Ca2+-ATPase of synaptosomes has recently been established as a model system for general anesthesia, the protein interior being the proposed target site (M.M. Lopez, D. Kosk-Kosicka, J. Biol. Chem. 270 (1995) 28239-28245). Multiple-site kinetics is now applied as a mechanistic tool to analyze inhibition by organic solvents and general anesthetics. A close fit to the experimental data points was achieved using the complex equations for a competitive displacement of lipid activators from multiple sites on the protein surface. Inhibitor dissociation constants were about 1. 6x105-fold higher than the microscopic lipid dissociation binding constants that are derived here for the first time. Binding of lipid therefore is by -7.1 kcal/mole favored over that of the tested inhibitors. The latter are nevertheless effective because in the model used displacement of only few of the lipid solvation molecules cause complete inhibition. The lipid/protein interface rather than protein or lipid alone appeared to be the anesthetic target site.  相似文献   

17.
The influence of myoplasmic Mg2+ (0.05-10 mM) on Ca2+ accumulation (net Ca2+ flux) and Ca2+ uptake (pump-driven Ca2+ influx) by the intact sarcoplasmic reticulum (SR) was studied in skinned fibres from the toad iliofibularis muscle (twitch portion), rat extensor digitorum longus (EDL) muscle (fast twitch), rat soleus muscle (slow twitch) and rat cardiac trabeculae. Ca2+ accumulation was optimal between 1 and 3 mM Mg2+ in toad fibres and reached a plateau between 1 and 10 mM Mg2+ in the rat EDL fibres and between 3 and 10 mM Mg2+ in the rat cardiac fibres. In soleus fibres, optimal Ca2+ accumulation occurred at 10 mM Mg2+. The same trend was obtained with all preparations at 0.3 and 1 microM Ca2+. Experiments with 2,5-di-(tert-butyl)-1,4-benzohydroquinone, a specific inhibitor of the Ca2+ pump, revealed a marked Ca2+ efflux from the SR of toad iliofibularis fibres in the presence of 0.2 microM Ca2+ and 1 mM Mg2+. Further experiments indicated that the SR Ca2+ leak could be blocked by 10 microM ruthenium red without affecting the SR Ca2+ pump and this allowed separation between SR Ca2+ uptake and SR Ca2+ accumulation. At 0.3 microM Ca2+, Ca2+ uptake was optimal with 1 mM Mg2+ in the toad iliofibularis and rat EDL fibres and between 1 and 10 mM Mg2+ in the rat soleus and trabeculae preparations. At higher [Ca2+] (1 microM), Ca2+ uptake was optimal with 1 mM Mg2+ in the iliofibularis fibres and between 1 and 3 mM Mg2+ in the EDL fibres.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
This study tested the hypothesis that perfusion with low concentrations of ryanodine, which opens the sarcoplasmic reticulum (SR) Ca2+ channel in a sub-conducting state, could mimic the effects of stunning on both mechanical and SR activity. Perfusion of isolated rat hearts with 10-160 nM ryanodine progressively decreased left ventricular developed pressure (LVDP) and increased end-diastolic pressure (EDP), but LVDP decreased more and EDP increased less than in the stunned heart. The effect of ryanodine perfusion on LVDP and EDP is consistent with the opening of the SR Ca2+ channel by high-affinity ryanodine binding, reducing SR Ca2+ content and interfering with mechanical function. In contrast to stunning, ryanodine perfusion did not affect the homogenate Ca2+ uptake rates measured in the presence or absence of high [ryanodine]. Perfusion with 80 nM 3H-ryanodine resulted in a large decline in LVDP, but only a small degree of ryanodine binding. Thus, prolonged opening of only a few channels affects the SR in situ, whereas this is undetectable in the homogenate. Higher levels of ryanodine binding (0.3 pmol/mg) to the in vitro homogenate also did not affect the homogenate Ca(2+)-uptake rate in the presence or absence of high [ryanodine], whereas it reduced the stimulation of Ca2+ uptake by ruthenium red. High-affinity ryanodine binding to the SR Ca2+ channel, either by perfusion or by binding after homogenisation, did not duplicate the increased Ca2+ efflux observed in the stunned heart, suggesting that the SR defect in the stunned heart is not a prolonged opening of a sub-conducting state of the SR Ca2+ channel.  相似文献   

19.
The aim of the present investigation was to study the functional alterations in the stomatognathic system following orthodontic-surgical management of skeletal vertical excess problems. The sample comprised 43 patients who received combined orthodontic-surgical treatment including bilateral vertical ramus osteotomy for posterior repositioning and counterclockwise rotation of the mandible (n = 26) or Le Fort I osteotomy for maxillary impaction (n = 17). All subjects were examined within 1 week before operation and 6 months postsurgery. Methods of examination included: (a) evaluation of dysfunction by means of a clinical index, (b) measurement of mandibular range of motion, (c) assessment of the number and intensity of occlusal contacts, and (d) tomographic evaluation of condyle-fossa relationships. The results of the study indicated that postoperatively (a) there was an increase of patients with dysfunction in the mandibular osteotomy group and a decrease of patients with dysfunction in the maxillary osteotomy group; (b) the maximum interincisal opening decreased significantly in the mandibular osteotomy group; (c) there was a significant increase in the number and intensity of occlusal contacts in both groups; and (d) the shortest posterior and anterior interarticular distances increased significantly in the mandibular osteotomy group.  相似文献   

20.
The Ca2+-binding protein S100A2 is an unusual member of the S100 family, characterized by its nuclear localization and down-regulated expression in tumorigenic cells. In this study, we investigated the properties of human recombinant S100A2 (wtS100A2) and of two mutants in which the amino-terminal Ca2+-binding site I (N mutant) and in addition the carboxyl-terminal site II (NC mutant) were replaced by the canonical loop (EF-site) of alpha-parvalbumin. Size exclusion chromatography and circular dichroism showed that, irrespective of the state of cation binding, wtS100A2 and mutants are dimers and rich in alpha-helical structure. Flow dialysis revealed that wtS100A2 binds four Ca2+ atoms per dimer with pronounced positive cooperativity. Both mutants also bind four Ca2+ atoms but with a higher affinity than wtS100A2 and with negative cooperativity. The binding of the first two Ca2+ ions to the N mutant occurred with 100-fold higher affinity than in wtS100A2 and a 2-fold increase for the last two Ca2+ ions. A further 2-3-fold increase of affinity was observed for respective binding steps of the NC mutant. The Hummel-Dryer method demonstrated that the wild type and mutants bind four Zn2+ atoms per dimer with similar affinity. Fluorescence and difference spectrophotometry showed that the binding of Ca2+ and Zn2+ induces considerable conformational changes, mostly attributable to changes in the microenvironment of Tyr76 located in site II. Fluorescence enhancement of 4,4'-dianilino-1, 1'-binaphthyl-5,5'-disulfonic acid clearly indicated that Ca2+ and Zn2+ binding induce a hydrophobic patch at the surface of wtS100A2, which, as in calmodulin, may be instrumental for the regulatory role of S100A2 in the nucleus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号