首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
In order to characterize a solid surface, the commonly used approach is to measure the advancing and receding contact angles, i.e., the contact angle hysteresis. However, often an estimate of the average wettability of the solid–liquid system is required, which involves both the dry and wetted states of the surface. In this work, we measured advancing and receding contact angles on six polymer surfaces (polystyrene, poly(ethylene terephthalate), poly(methyl methacrylate), polycarbonate, unplasticized poly(vinyl chloride), and poly(tetrafluoroethylene)) with water, ethylene glycol and formamide using the sessile drop and captive bubble methods. We observed a general disagreement between these two methods in the advancing and receding contact angles values and the average contact angle determined separately by each method, although the contact angle hysteresis range mostly agreed. Surface mobility, swelling or liquid penetration might explain this behaviour. However, we found that the 'cross' averages of the advancing and receding angles coincided. This finding suggests that the cross-averaged angle might be a meaningful contact angle for polymer–liquid systems. Hence, we recommend using both the sessile drop and captive bubble methods.  相似文献   

2.
3.
The water wettability of surfaces, whose surface conditions are comparable to those used in heat and mass transfer equipment, has been investigated experimentally and theoretically.In the first part, results of contact angle measurements for water on metal and non-metal surfaces are reported. With hydrophobic non-metal surfaces (e.g. Teflon) water forms large advancing and receding contact angles, and the contact angle hysteresis is small. Surface contamination is of minor influence. Hydrophilic metal surfaces (copper, nickel) are completely wetted by water only if the surfaces are extremely clean. Surface contamination reduces the wettability drastically. Under most industrial conditions advancing contact angles between 40° and 80°, and receding contact angles smaller than 20° can be expected, and the contact angle hysteresis is large. Corrosion can enhance the water wettability.In the second part, a thermodynamic analysis of the wetting of heterogeneous surfaces is presented. Equilibrium considerations for a model surface consisting of two components of different wettability provide the advancing and receding contact angles for a heterogeneous surface as a function of the equilibrium contact angles, surface fractions, and the distribution function of the two components. The advancing and receding contact angles as well as all the intermediate contact angles indicate metastable states of equilibrium of the system. The results of the model calculations give a physically based explanation for the characteristic wetting behaviour of industrial surfaces found experimentally.  相似文献   

4.
The determination of solid surface free energy is still an open problem. The method proposed by van Oss and coworkers gives scattered values for apolar Lifshitz-van der Waals and polar (Lewis acid-base) electron-donor and electron-acceptor components for the investigated solid. The values of the components depend on the kind of three probe liquids used for their determination. In this paper a new alternative approach employing contact angle hysteresis is offered. It is based on three measurable parameters: advancing and receding contact angles (hysteresis of the contact angle) and the liquid surface tension. The equation obtained allows calculation of total surface free energy for the investigated solid. The equation is tested using some literature values, as well as advancing and receding contact angles measured for six probe liquids on microscope glass slides and poly(methyl methacrylate) PMMA, plates. It was found that for the tested solids thus calculated total surface free energy depended, to some extent, on the liquid used. Also, the surface free energy components of these solids determined by van Oss and coworkers' method and then the total surface free energy calculated from them varied depending on for which liquid-set the advancing contact angles were used for the calculations. However, the average values of the surface free energy, both for glass and PMMA, determined from these two approaches were in an excellent agreement. Therefore, it was concluded that using other condensed phase (liquid), thus determined value of solid surface free energy is an apparent one, because it seemingly depends not only on the kind but also on the strength of interactions operating across the solid/liquid interface, which are different for different liquids.  相似文献   

5.
Low-voltage electrowetting on dielectrics on substrates with a thin layer of lubricating fluid to reduce contact angle hysteresis is reported here. On smooth and homogeneous solid surfaces, it is extremely difficult to reduce contact angle hysteresis (contact angle difference between advancing and receding drop volume cycle) and the electrowetting hysteresis (contact angle difference between increasing and decreasing voltage cycle) below 10°. On the other hand, electrowetting hysteresis on rough surfaces can be relatively large (~30°); therefore, they are not useful for most of the fluidic devices. In the present report, we demonstrate that using a thin layer of dielectric lubricating fluid on top of the solid dielectric surface reduces the contact angle hysteresis as well as electrowetting hysteresis below 2° on smooth as well as rough surfaces. Electrowetting on lubricating fluid-coated surfaces also show a threshold behavior and the threshold voltage depends on the viscosity of the lubricating fluid. Modified Lippmann equation is used to explain the electrowetting on lubricant-coated surfaces quantitatively. The experimental system can be modeled as two series capacitor, one each for dielectric lubricating fluid and solid dielectric, which jointly govern the electrowetting behavior, whereas the lubricating fluid also minimizes the contact angle hysteresis  相似文献   

6.
We report the fabrication of a sticky superhydrophobic paper surface with extremely high contact angle hysteresis: advancing contact angle ~150° (superhydrophobic) and receding contact angle ~10° (superhydrophilic). In addition, we report the controlled tunability of the contact angle hysteresis from 149.8 ± 5.8° to 3.5 ± 1.1°, while maintaining superhydrophobicity, as defined through an advancing contact angle above 150°. The hysteresis was tuned through the controlled fabrication of nano-scale features on the paper fibers via selective plasma etching. The variations in contact angle hysteresis are attributed to a transition of the liquid–surface interaction from a Wenzel state to a Cassie state on the nano-scale, while maintaining a Cassie state on the micro-scale. Superhydrophobic cellulosic surfaces with tunable stickiness or adhesion have potential applications in the control of aqueous drop mobility and the transfer of drops on inexpensive, renewable substrates.  相似文献   

7.
The poly(ethylene terephthalate), PET, film was exposed to atmospheric pressure plasma under various plasma processing parameters. The wettability of the PET film immediately after the exposure and after storage in air, which was determined by the sessile drop method, was strongly dependent on the plasma processing parameters. The contact angle hysteresis on the plasma-exposed PET film was examined by the Wilhelmy method. It was found that the hydrophobic recovery of the PET surface on storage after the plasma exposure was observed only for the advancing contact angle and that the receding angle remained almost the same. These experimental findings were explained on the basis of the calculation by Johnson and Dettre for the advancing and receding contact angles on model heterogeneous surfaces.  相似文献   

8.
The phenomenon of hysteresis of contact angle is an important topic subject to a long time of argument.A simple hydrostatic model of sessile drops under the gravity in combination with an ideal surface roughness model is used to interpret the process of drop volume increase or decrease of a planar sessile drop and to shed light on the contact angle hysteresis and its relationship with the solid surface roughness. With this model, the advancing and receding contact angles are conceptually explained in terms of equilibrium contact angle and surface roughness only,without invoking the thermodynamic multiplicity. The model is found to be qualitatively consistent to experimental observations on contact angle hysteresis and it suggests a possible way to approach the hysteresis of three-dimensional sessile drops.  相似文献   

9.
蔡泰民  贾志海  贺吉昌  雷威 《化工进展》2014,33(8):2123-2129
倾斜微结构疏水表面液滴的滞后特性包括接触角滞后和滚动角。目前,具有较高精度的微结构疏水表面滚动角模型是以理想液滴形状为计算基础,忽略了重力、接触角滞后以及能垒引起的变形。本文以聚二甲基硅氧烷(PDMS)为基底,制备了方柱状微结构疏水表面,考虑疏水表面微观结构以及液滴大小两方面的因素,研究了倾斜微结构疏水表面液滴的滞后特性。从力和能量的角度对其影响机理进行了分析,通过滚动角理论值与实际值的比较发现,微方柱间距较大时,接触角滞后和能垒对滚动角影响显著,证实了该分析的合理性,为研究更加精确的滚动角模型奠定了理论基础。  相似文献   

10.
Contact angle relaxation was measured for captive air bubbles placed on solid surfaces of varying degrees of heterogeneity, roughness, and stability, in water. The experimental results indicate that both advancing and receding contact angles undergo slow relaxation in these water-air-solid systems, due to instabilities of the three-phase contact line region. It is shown that the advancing contact angle decreases and the receding contact angle increases for many systems over a period of a few hours. Also, examples of reverse progressions are reported. Additionally, in extreme cases, the contact angle oscillates down and up, over and over again, preventing the system from stabilization/equilibration. Four different mechanisms are proposed to explain the contact angle relaxation. These include (i) pinning of the three-phase contact line and its slow evolution; (ii) the formation of microdroplets on the solid surface and their coalescence with the base of the gas bubble, which causes dynamic behavior of the three-phase contact line; (iii) deformation of the solid surface and its effect on the apparent contact angle; and (iv) chemical instability of the solid.  相似文献   

11.
In this paper, a method to measure the advancing and receding contact angles on individual colloidal spheres is described. For this purpose, the microspheres were attached to atomic force microscope cantilevers. Then the distance to which the microsphere jumps into its equilibrium position at the air-liquid interface of a drop or an air bubble was measured. From these distances the contact angles were calculated. To test the method, experiments were done with silanized silica spheres (4.1 μm in diameter). From the experiments with drops, an advancing contact angle of 101 ± 4° was determined. A receding contact angle of 101 ± 2° was calculated from the jump-in distance into a bubble. Both experimental techniques gave the same contact angle. In contrast, on similarly prepared planar silica surfaces, a clear hysteresis was measured with the sessile drop method; contact angles of 104.5 ± 1° and 93.8 ± 1° were determined for the advancing and receding contact angles, respectively.  相似文献   

12.
An experimental investigation of advancing and receding contact lines on patterned surfaces was performed in a controlled environment. Hydrophobic polymers were used to create patterned surfaces to mimic defects and the working fluid was water. Surfaces were prepared with holes or pillars every 200 μm and depth/height from 1 to 11 μm. An optical technique was used to measure contact angle. On smooth (control) surfaces, an advancing or receding contact angle was observed. On the patterned surfaces, pinning and depinning at the defects (holes or pillars, respectively) was observed, with advancing or receding contact lines occurring between these depinning/pinning events. The observed pinning/depinning phenomenon of the contact line was investigated to demonstrate the dynamics of the contact line motion over rough surfaces for a small range of contact line velocity. The competition between the Young unbalanced force and the anchoring forces of the defects is thought to dominate the pinning/depinning process. Stick–slip behaviour of the contact line is observed for larger structures and the results show a strong pinning of the contact line on surfaces with larger defects. The datum contact angle and its deviation were measured and a new concept of scaled energy barrier was calculated for advancing contact lines. This was strongly dependent on defect size. An estimation of the unbalanced Young force per unit length was also made for comparison, which also depended on defect size. This new approach allows new insights into this wetting phenomenon.  相似文献   

13.
Hysteresis of the contact angle, i.e. the difference between the advancing and receding contact angles, is discussed in terms of the liquid film presence behind the drop when it has receded. It is shown that values of receding contact angles in many systems result from a well-defined free energy balance in the solid/liquid drop system. If a duplex film is present behind the drop, experimental receding contact angles up to 15° may be considered as lying in the range of the experimental error. In the case of low-energy solids (e.g. Teflon), it is possible to determine graphically the minimum value of the surface tension below which a liquid will leave a duplex film behind the drop when receding.  相似文献   

14.
The reorganization of a surface structure in response to a change in environmental media was investigated for copolymers having both hydrophobic polydimethylsiloxane (PDMS) and hydrophilic methoxypoly-ethyleneglycol (MPEG) side chains via dynamic contact angle (DCA). These copolymers showed a large contact angle hysteresis and a dependency of the advancing and receding contact angle on dipping velocity (DV). Composition dependency of DCA for these copolymers is also discussed. In addition to this, adhesion tension relaxation, F(t), for MMA/MPEGMA/PDMSMA was determined. F(t) in the advancing process increased with elapsed time and decreased in the receding process. These phenomena were explained by the adsorption and reorientation of hydrophilic segments to the water/copolymer interface in water. In XPS analysis, more oxygen atoms were detected on the surfaces of MMA/MPEGMA after immersion in water than before. For MMA/MPEGMA/PDMSMA, the atomic ratio of Si to C increased with an increase in PDMSMA content.  相似文献   

15.
Hydrophobic solid surfaces with controlled roughness were prepared by coating glass slides with an amorphous fluoropolymer (Teflon® AF1600, DuPont) containing varying amounts of silica spheres (diameter 48?μm). Quasi-static advancing, θA, and receding, θR, contact angles were measured with the Wilhelmy technique. The contact angle hysteresis was significant but could be eliminated by subjecting the system to acoustic vibrations. Surface roughness affects all contact angles, but only the vibrated ones, θV, agree with the Wenzel equation. The contact angle obtained by averaging the cosines of θA and θR is a good approximation for θV, provided that roughness is not too large or the angles too small. Zisman's approach was employed to obtain the critical surface tension of wetting (CST) of the solid surfaces. The CST increases with roughness in accordance with Wenzel equation. Advancing, receding, and vibrated angles yield different results. The θA is known to be characteristic of the main hydrophobic component (the fluoropolymer). The θV is a better representation of the average wettability of the surface (including the presence of defects).  相似文献   

16.
Hydrophobic solid surfaces with controlled roughness were prepared by coating glass slides with an amorphous fluoropolymer (Teflon® AF1600, DuPont) containing varying amounts of silica spheres (diameter 48 μm). Quasi-static advancing, θA, and receding, θR, contact angles were measured with the Wilhelmy technique. The contact angle hysteresis was significant but could be eliminated by subjecting the system to acoustic vibrations. Surface roughness affects all contact angles, but only the vibrated ones, θV, agree with the Wenzel equation. The contact angle obtained by averaging the cosines of θA and θR is a good approximation for θV, provided that roughness is not too large or the angles too small. Zisman's approach was employed to obtain the critical surface tension of wetting (CST) of the solid surfaces. The CST increases with roughness in accordance with Wenzel equation. Advancing, receding, and vibrated angles yield different results. The θA is known to be characteristic of the main hydrophobic component (the fluoropolymer). The θV is a better representation of the average wettability of the surface (including the presence of defects).  相似文献   

17.
The reorganization of a surface structure in response to a change in environmental media was investigated for copolymers having both hydrophobic polydimethylsiloxane (PDMS) and hydrophilic methoxypoly-ethyleneglycol (MPEG) side chains via dynamic contact angle (DCA). These copolymers showed a large contact angle hysteresis and a dependency of the advancing and receding contact angle on dipping velocity (DV). Composition dependency of DCA for these copolymers is also discussed. In addition to this, adhesion tension relaxation, F(t), for MMA/MPEGMA/PDMSMA was determined. F(t) in the advancing process increased with elapsed time and decreased in the receding process. These phenomena were explained by the adsorption and reorientation of hydrophilic segments to the water/copolymer interface in water. In XPS analysis, more oxygen atoms were detected on the surfaces of MMA/MPEGMA after immersion in water than before. For MMA/MPEGMA/PDMSMA, the atomic ratio of Si to C increased with an increase in PDMSMA content.  相似文献   

18.
The axisymmetric Laplace equation is solved numerically to extract contact-angle data for a flat liquid/vapor interface contacting a submerged hemispherical solid. The liquid/vapor interface is treated as a membrane, with a membrane tension equal to the surface energy of the liquid. By measuring the vertical displacement of the membrane and the projected contact area the membrane makes with the hemisphere, the contact angle and correspondingly the driving force for motion of the contact line can be measured. We show that characteristic receding and advancing contact angles can be obtained by measuring the contact radii formed upon initial contact between the interface and hemisphere and final contact just prior to detachment of the interface, respectively. Use of the technique is illustrated with a model experiment involving the contact of an air/water interface with a poly(methyl methacrylate) surface.  相似文献   

19.
Effect of the coating method on the formation of superhydrophobic polydimethylsiloxane–urea copolymer (TPSC) surfaces, modified by the incorporation of hydrophobic fumed silica nanoparticles was investigated. Four different coating methods employed were: (i) layer-by-layer spin-coating of hydrophobic fumed silica dispersed in an organic solvent onto TPSC films, (ii) spin-coating of silica–polymer mixture onto a glass substrate, (iii) spray coating of silica/polymer mixture by an air-brush onto a glass substrate, and (iv) direct coating of silica–polymer mixture by a doctor blade onto a glass substrate. Influence of the coating method, composition of the polymer/silica mixture and the number of silica layers applied on the topography and wetting behavior of the surfaces were determined. Surfaces obtained were characterized by scanning electron microscopy (SEM), white light interferometry (WLI) and advancing and receding water contact angle measurements. It was demonstrated that superhydrophobic surfaces could be obtained by all methods. Surfaces obtained displayed hierarchical micro-nano structures and superhydrophobic behavior with static and advancing water contact angles well above 150° and fairly low contact angle hysteresis values.  相似文献   

20.
The axisymmetric Laplace equation is solved numerically to extract contact-angle data for a flat liquid/vapor interface contacting a submerged hemispherical solid. The liquid/vapor interface is treated as a membrane, with a membrane tension equal to the surface energy of the liquid. By measuring the vertical displacement of the membrane and the projected contact area the membrane makes with the hemisphere, the contact angle and correspondingly the driving force for motion of the contact line can be measured. We show that characteristic receding and advancing contact angles can be obtained by measuring the contact radii formed upon initial contact between the interface and hemisphere and final contact just prior to detachment of the interface, respectively. Use of the technique is illustrated with a model experiment involving the contact of an air/water interface with a poly(methyl methacrylate) surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号